
The tool of thought for expert programming

Dyalog™ forWindows

Object Reference

Version: 13.2

Dyalog Limited
email: support@dyalog.com

http://www.dyalog.com

Dyalog is a trademark of Dyalog Limited

Copyright © 1982-2013 by Dyalog Limited

All rights reserved.

Version: 13.2

Revision: 22186

Nopart of this publicationmay be reproduced in any form by any means without the prior written per-
mission of Dyalog Limited.

Dyalog Limitedmakes no representations or warranties with respect to the contents hereof and spe-
cifically disclaims any impliedwarranties of merchantability or fitness for any particular purpose. Dya-
log Limited reserves the right to revise this publicationwithout notification.

TRADEMARKS:

SQAPL is copyright of Insight Systems ApS.

UNIX is a registered trademark of The OpenGroup.

Windows, Windows Vista, Visual Basic andExcel are trademarks of Microsoft Corporation.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

All other trademarks and copyrights are acknowledged.

iii

Contents

Chapter 1: Introduction 1
Objects Categorised 3
Objects A-Z 6
Properties A-Z 9
Events A-Z 26
Methods A-Z 32
Native Look and Feel 36

Chapter 2:A-ZReference 37
Abort 38
Accelerator 38
AcceptFiles 39
ActivateApp 39
Active 40
ActiveXContainer 40
ActiveXControl 41
AddChildren 44
AddCol 45
AddComment 46
AddItems 47
AddRow 48
Align 49
AlignChar 51
AlphaBlend 51
AlwaysShowBorder 52
AlwaysShowSelection 52
AmbientChanged 53
Animate 54
Animation 56
AnimClose 57
AnimOpen 57
AnimPlay 58
AnimStarted 59
AnimStop 59
AnimStopped 60
APLVersion 61
ArcMode 62
Array 62
Attach 63
AutoArrange 64

iv

AutoBrowse 65
AutoConf 65
AutoExpand 66
AutoPlay 67
BadValue 67
BalloonHide 68
BalloonShow 68
BalloonTimeout 69
BalloonUserClick 69
BandBorders 70
BaseClass 71
BCol 71
BeginEditLabel 73
Bitmap 74
Bits 76
Border 77
Browse 77
BrowseBox 78
BrowseFor 79
BtnPix 80
Btns 81
Button 82
ButtonEdit 85
ButtonsAcceptFocus 87
Calendar 88
CalendarCols 92
CalendarDblClick 92
CalendarDown 93
CalendarMove 94
CalendarUp 95
Cancel 95
CancelToClose 96
Caption 96
CaseSensitive 96
CBits 97
CellChange 97
CellChanged 99
CellDblClick 100
CellDown 101
CellError 102
CellFonts 103
CellFromPoint 103
CellHeights 104
CellMove 104
CellOver 105
CellSelect 106
CellSet 109
CellTypes 109

v

CellUp 110
CellWidths 111
Change 111
Changed 113
CharFormat 114
CharSet 116
CheckBoxes 118
Checked 118
ChildEdge 119
ChildList 120
ChooseFont 120
Circle 122
CircleToday 124
ClassID 124
ClassName 125
ClickComment 126
Clipboard 127
ClipCells 129
ClipChange 130
Close 130
CloseUp 131
CMap 132
ColChange 134
Collate 134
ColLineTypes 135
ColorButton 136
ColorChange 137
ColorMode 138
ColSorted 138
ColSortImages 141
ColTitle3D 142
ColTitleAlign 143
ColTitleBCol 143
ColTitleDepth 144
ColTitleFCol 145
ColTitles 145
ColumnClick 146
ColumnWidth 146
Combo 147
ComboEx 149
Configure 151
Container 153
ContextMenu 153
CoolBand 154
CoolBar 156
Coord 160
Copies 161
Create 162

vi

Cue 163
CurCell 164
CurrentColor 164
CurrentState 164
Cursor 165
CursorObj 166
CustomColors 167
CustomFormat 168
Data 169
DateTime 170
DateTimeChange 170
DateTimePicker 171
DateToIDN 172
DblClickToggle 173
DDE 173
Decimals 174
Default 174
DefaultColors 175
DelCol 175
DelComment 176
DeleteChildren 176
DeleteItems 177
DeleteTypeLib 177
DelRow 178
Depth 178
Detach 180
DevCaps 181
Directory 181
DisplayChange 182
Divider 182
Dockable 183
DockAccept 184
DockCancel 184
DockChildren 185
Docked 186
DockEnd 186
DockMove 187
DockRequest 188
DockShowCaption 188
DockStart 190
Dragable 190
DragDrop 191
DragItems 192
DrawMode 193
DropDown 195
DropFiles 196
DropObjects 197
Duplex 198

vii

DuplicateColumn 198
DuplicateRow 199
DyalogCustomMessage1 199
EdgeStyle 200
Edit 202
EditImage 205
EditImageIndent 205
EditLabels 205
Elevated 206
Ellipse 207
Encoding 212
End 214
EndEditLabel 214
EndSplit 215
EnterReadOnlyCells 215
EvaluationDays 216
Event 217
EventList 224
ExitApp 224
ExitWindows 225
Expanding 226
ExportedFns 226
ExportedVars 227
Expose 228
FCol 229
FieldType 230
File 233
FileBox 234
FileBoxCancel 235
FileBoxOk 236
FileMode 236
FileRead 237
FileWrite 237
FillCol 238
Filters 239
FirstDay 239
Fixed 240
FixedOrder 240
FlatSeparators 240
Flush 241
Font 242
FontCancel 243
FontList 243
FontObj 245
FontOK 247
Form 248
Formats 251
FormatString 251

viii

FrameContextMenu 252
FStyle 253
FullRowSelect 254
GetBuildID 255
GetCellRect 256
GetCommandLine 256
GetCommandLineArgs 257
GetComment 257
GetDayStates 258
GetEnvironment 260
GetEventInfo 261
GetFocus 262
GetItemHandle 262
GetItemPosition 263
GetItemState 263
GetMethodInfo 264
GetMinSize 265
GetParentItem 265
GetPropertyInfo 266
GetTextSize 267
GetTipText 268
GetTypeInfo 268
GetVisibleRange 269
GotFocus 269
GreetBitmap 270
Grid 271
GridBCol 276
GridCopy 277
GridCopyError 279
GridCut 280
GridDelete 281
GridDropSel 281
GridFCol 283
GridKeyPress 283
GridLineFCol 284
GridLines 285
GridLineWidth 285
GridPaste 286
GridPasteError 288
GridSelect 289
GripperMode 290
Group 291
HAlign 292
Handle 293
HasApply 294
HasButtons 294
HasCheckBox 294
HasEdit 295

ix

HasHelp 295
HasLines 295
HasTicks 296
HasToday 296
Header 296
HeaderImageIndex 297
HeaderImageList 297
Help 298
HelpButton 298
HelpFile 299
HideComment 299
HighlightHeaders 300
Hint 300
HintObj 300
HotSpot 301
HotTrack 301
HScroll 302
HScroll 303
HThumbDrag 304
Icon 305
IconObj 307
Idle 308
IDNToDate 308
Image 309
ImageCount 310
ImageIndex 311
ImageList 311
ImageListObj 313
Indents 314
Index 314
IndexChanged 315
Input 315
InputMode 317
InputModeKey 319
InputProperties 319
InstanceMode 320
Interval 320
Italic 321
ItemDblClick 321
ItemDown 322
ItemGroupMetrics 322
ItemGroups 324
Items 326
ItemUp 326
Justify 327
KeepBits 328
KeepOnClose 329
KeyError 330

x

KeyPress 331
Label 334
LastError 335
LicenseKey 335
Limits 335
List 336
ListTypeLibs 337
ListView 338
LocalAddr 343
LocalAddrName 343
Locale 344
LocalPort 345
LocalPortName 346
Locator 346
Locator 348
LockColumns 349
LockRows 350
LostFocus 352
LStyle 353
LWidth 353
MakeGIF 354
MakePNG 354
MapCols 355
Marker 356
Mask 358
MaskCol 359
Masked 360
MaxButton 360
MaxDate 361
MaxLength 361
MaxSelCount 361
MDIActivate 362
MDIActive 362
MDIActiveObject 363
MDIArrange 363
MDICascade 363
MDIClient 364
MDIDeactivate 365
MDIMenu 366
MDITile 366
Menu 367
MenuBar 368
MenuItem 369
Metafile 371
MetafileObj 372
MethodList 374
MinButton 374
MinDate 375

xi

MonthDelta 375
MouseDblClick 375
MouseDown 376
MouseEnter 377
MouseLeave 378
MouseMove 379
MouseUp 380
MouseWheel 381
Moveable 382
MsgBox 382
MsgBtn1 384
MsgBtn2 385
MsgBtn3 385
MultiColumn 385
MultiLine 386
MultiSelect 387
NameFromHandle 387
NetClient 388
NetType 389
NewLine 389
NewPage 390
Note 390
OCXClass 391
OKButton 392
OLEAddEventSink 392
OLEClient 393
OLEControls 394
OLEDeleteEventSink 394
OLEListEventSinks 394
OLEQueryInterface 395
OLERegister 395
OLEServer 396
OLEServers 397
OLEUnregister 397
OnTop 398
Orientation 398
OtherButton 399
OverflowChar 399
PageActivate 400
PageActive 400
PageActiveObject 401
PageApply 401
PageBack 402
PageCancel 402
PageChanged 403
PageDeactivate 403
PageFinish 404
PageHelp 404

xii

PageNext 405
PageSize 405
PageWidth 406
PaperSize 406
PaperSizes 407
PaperSource 407
PaperSources 408
ParaFormat 408
Password 409
PathWordBreak 409
Picture 409
PName 411
Points 411
Poly 412
Popup 415
Posn 415
PreCreate 416
Print 416
Printer 417
PrintList 419
PrintRange 420
ProgressBar 421
ProgressStep 422
ProgressStyle 423
PropertyPage 425
PropertySheet 429
PropList 431
Protected 432
QueueEvents 432
Radius 433
RadiusMode 433
Range 434
ReadOnly 434
RealSize 434
Rect 435
Redraw 438
RemoteAddr 439
RemoteAddrName 439
RemotePort 440
RemotePortName 440
ReportBCol 441
ReportImageIndex 441
ReportInfo 442
ResizeCols 442
ResizeColTitles 443
ResizeRows 443
ResizeRowTitles 444
Resolution 444

xiii

Resolutions 445
Retracting 445
RichEdit 446
Root 448
Rotate 449
RowChange 450
RowHiddenDepth 450
RowLineTypes 450
Rows 451
RowSetVisibleDepth 451
RowTitleAlign 453
RowTitleBCol 453
RowTitleDepth 454
RowTitleFCol 455
RowTitles 456
RowTreeDepth 456
RowTreeImages 458
RowTreeStyle 460
RTFPrint 463
RTFPrintSetup 464
RTFText 465
RunMode 466
Scroll 467
Scroll 469
ScrollOpposite 470
SelDate 471
SelDateChange 471
Select 472
SelectionBorderWidth 473
SelectionColor 473
SelectionColorAlpha 473
SelImageIndex 474
SelItems 474
SelRange 475
SelText 475
Separator 476
ServerVersion 477
SetCellSet 477
SetCellType 478
SetColSize 478
SetEventInfo 479
SetFinishText 482
SetFnInfo 482
SetItemImage 484
SetItemPosition 485
SetItemState 485
SetMethodInfo 486
SetPropertyInfo 488

xiv

SetRowSize 489
SetSpinnerText 490
Setup 490
SetVarInfo 491
SetWizard 491
ShowBalloonTip 492
ShowCaptions 494
ShowComment 495
ShowCueWhenFocused 496
ShowDropDown 496
ShowHelp 497
ShowInput 497
ShowItem 499
ShowProperties 499
ShowSession 499
ShowSIP 500
ShowThumb 500
SingleClickExpand 501
SIPMode 501
SIPResize 502
Size 502
Sizeable 503
SM 504
SocketNumber 506
SocketType 506
SortItems 506
Spin 507
Spinner 508
SplitObj1 510
SplitObj2 511
Splitter 512
Splitting 518
Start 519
StartIn 519
StartSplit 520
State 520
StateChange 521
Static 522
StatusBar 523
StatusField 525
Step 526
Style 527
SubForm 530
SysColorChange 531
SysMenu 531
SysTrayItem 532
TabBar 533
TabBtn 535

xv

TabButton 536
TabControl 537
TabFocus 540
TabIndex 541
TabJustify 542
TabObj 543
TabSize 543
Target 544
TargetState 544
TCPAccept 545
TCPClose 546
TCPConnect 546
TCPError 547
TCPGetHostID 547
TCPGotAddr 548
TCPGotPort 548
TCPReady 549
TCPRecv 549
TCPSend 550
TCPSendPicture 551
TCPSocket 552
Text 553
Text 556
TextSize 557
Thumb 558
ThumbDrag 558
ThumbRect 559
TickAlign 559
TickSpacing 560
Timer 560
Timer 561
Tip 561
TipField 562
TipObj 563
TitleHeight 563
TitleWidth 563
Today 564
ToolBar 564
ToolboxBitmap 566
ToolButton 567
ToolControl 569
TrackBar 574
TrackRect 577
Translate 577
Transparent 578
TreeView 579
Type 581
TypeLibFile 582

xvi

TypeLibID 582
TypeList 582
Underline 583
Undo 583
UndocksToRoot 583
UpDown 584
UpperCase 585
ValidIfEmpty 585
VAlign 586
Value 586
Values 587
VariableHeight 587
View 587
Visible 589
VScroll 590
VScroll 591
VThumbDrag 592
Wait 593
WantsReturn 593
WeekNumbers 593
Weight 594
WinIniChange 594
WordFormat 594
Wrap 595
XRange 596
Yield 596
YRange 597

Chapter 1: Introduction 1

Chapter 1:

Introduction

The Dyalog APL GUI is based upon the concepts of objects, properties, events and
methods.

Objects
Objects are instances of classes that contain information and provide functionality.
Most Dyalog APL objects are GUI objects that may be displayed on the screen and
with which you can interact. An example of an object is a push-button (an instance
of class Button) which you may press to cause the program to take a particular
action. Objects are defined in hierarchies.

Properties
Each object has an associated set of properties which describe how it looks and
behaves. For example, a Button has a property called Caption which defines the
character string to be displayed in it.

Events
During interaction with the user, an object is capable of generating events.

An example is the Select event. For a Button object, this event is generated
when the user presses the Button. This can be done in several ways. Firstly, the user
may click the left mouse button over the object. Secondly, under certain cir-
cumstances, the Select event can be generated when the user presses the Enter key.
Finally, the event will occur if the user presses a "short-cut" (mnemonic) key that is
associated with the Button.

Chapter 1: Introduction 2

Methods
Methods are effectively functions that an object provides; they are things that you
may invoke to make the object do something for you. In Dyalog APL, the distinction
between methods and events is tenuous, because events also make objects perform
actions and you may generate events under program control. For example, a Scroll
event is generated by a scrollbar when the user moves the thumb. Conversely, you
can make a scrollbar scroll by generating a Scroll event. Nevertheless, the concept
of a method is useful to describe functions that can only be invoked by a program
and are not directly accessible to the user.

Object Management Functions
This is a set of system functions used to create objects, set properties, respond to
events, and call methods.

⎕DQ Dequeue processes user actions, invoking callbacks

⎕NQ Enqueue generates an event under program control

⎕WC Create Object creates new object with specified properties

⎕WG Get Properties gets values of properties from an object

⎕WN Object Names reports names of all children of an object

⎕WS Set Properties sets values of properties for an object

This chapter provides a summary listing all the objects, properties, events and meth-
ods with a brief description.

The following Chapter describes each item in detail in alphabetical order.

Chapter 1: Introduction 3

Objects Categorised
System Objects

Root system-level object

Printer for hard-copy output

Clipboard provides access to Windows clipboard

Container Objects

CoolBand represents a band in a CoolBar

CoolBar a container for CoolBand objects

Form top-level Window

MDIClient container for MDI windows

SubForm acts as an MDI window or a constrained Form

Group a frame for grouping Buttons and other objects

Static a frame for drawing and clipping graphics

StatusBar ribbon status bar

TabBar contains TabBtns (tabs)

TabControl contains TabButtons (tabs)

ToolBar ribbon tool bar

ToolControl standard Windows tool control

PropertySheet contains PropertyPages

PropertyPage tabbed or paged container for other controls

Splitter divides a container into panes

Menu

MenuBar pull-down menu bar

Menu pop-up menu

MenuItem selects an option or action

Separator separator between items

Chapter 1: Introduction 4

Action

Button selects an option

ToolButton performs an action or selects an option

TabBtn selects a tabbed SubForm

TabButton selects a tabbed SubForm

Scroll scroll bar

UpDown spin buttons

Locator graphical (positional) input device

Timer generates events at regular intervals

Information

Label displays static text

StatusField displays status information

MsgBox displays a message box

TipField displays pop-up context sensitive help

ProgressBar displays the progress of a lengthy operation

Input & Selection

Calendar displays a month calendar control

Grid displays a data matrix as a spreadsheet

Edit text input field

ButtonEdit text input field with dropdown button

RichEdit text input with word-processing capabilities

Spinner input field with spin buttons

List for selecting an item

ListView displays a collection of items for selection

Combo edit field with selectabe list of choices

TreeView displays a hierarchical collection of items

TrackBar a slider control for analogue input/output

FileBox prompts user to select a file

Chapter 1: Introduction 5

Resource

Font loads a font

Bitmap defines a bitmap

Icon defines an icon

ImageList defines a collection of bitmaps or icons

Metafile loads a Windows Metafile

Cursor defines a cursor

Graphical Output

Circle draws a circle

Ellipse draws an ellipse

Marker draws a series of polymarkers

Poly draws lines

Rect draws rectangles

Image displays Bitmaps, Icons and Metafiles

Text draws graphical text

Miscellaneous

ActiveXContainer represents the application hosting a Dyalog APL
ActiveXControl

ActiveXControl represents an ActiveX control written in Dyalog APL

NetClient provides access to .Net Classes

NetControl instantiates a .Net Control.

NetType exports an APL namespace as a Net Class

OCXClass provides access to OLE Custom Controls

OLEClient provides access to OLE Automation objects

OLEServer enables APL to act as an OLE Automation server

SM specifies a window for ⎕SM(character mode interface)

TCPSocket provides an interface to TCP/IP sockets

Chapter 1: Introduction 6

Objects A-Z
Object Description

ActiveXContainer represents the application hosting a Dyalog APL
ActiveXControl

ActiveXControl implements an ActiveX control written in Dyalog APL

Animation plays simple AVIs

Bitmap can be used to fill an area, or as a background pattern

BrowseBox allows the user to browse for a folder or other resource

Button used to perform a task or select an option

ButtonEdit single-line input field with custom button

Calendar displays a month calendar control

Circle draws circles, arcs and pies

Clipboard provides access to the Windows clipboard

ColorButton allows the user to select a colour

Combo combines text entry field with list of choices

ComboEx an extended version of the Combo object that provides
additional features including item images

CoolBand represents a band in a CoolBar

CoolBar acts as a container for CoolBand objects

Cursor creates user-defined cursor

DateTimePicker an editable date/time field with an optional drop-down
Calendar

Edit single or multi-line edit box for entering data

Ellipse draws ellipses, elliptical arcs and pies

FileBox standard File Selection dialog box

Font a font resource

Form window that acts as a container for other objects

Grid spreadsheet object for editing data

Chapter 1: Introduction 7

Object Description

Icon can be displayed, or used when a Form is minimized

Image graphical object for displaying bitmaps and icons

ImageList specifies a collection of bitmaps or icons for a ListView
or TreeView

Label fixed text that the user cannot change

List list of items from which the user can choose

ListView collection of items from which the user can choose

Locator moving line, rectangle or ellipse for graphics input

Marker draws marker at a series of points

MDIClient provides Multiple Document Interface (MDI) behaviour

Menu displays a pulldown or pop-up menu

MenuBar displays list of pulldown menus across top of Form

MenuItem component of a Menu that performs action or makes
choice

Metafile provides access to Windows Metafiles

MsgBox displays message in dialog box and waits for response

NetClient Provides access to .NET Classes

NetType Exports a namespace as a .NET class

OCXClass provides access to OLE Custom Controls

OLEClient provides access to OLE Automation objects

OLEServer enables APL to act as an OLE Automation server

Poly draws lines, polygons and filled areas

Printer controls output to a printer

ProgressBar indicates the progress of a lengthy operation

PropertyPage tabbed or paged container for other controls

PropertySheet container for PropertyPages

Rect draws filled and unfilled rectangles

RichEdit an edit box with word-processing capabilities

Root the system object that is the progenitor of all others

Chapter 1: Introduction 8

Object Description

Scroll horizontal or vertical scrollbar

Separator horizontal or vertical line in Menu, or vertical break in
MenuBar

SM allows ⎕SM and ⎕SRto be used with GUI objects

Spinner input field with spin buttons

Splitter divides a Form or SubForm into resizable panes

Static frame or box used to contain graphics

StatusBar manages a set of StatusField objects

StatusField displays context-sensitive help, or keyboard status

SubForm child Form that is constrained within its parent

SysTrayItem represents an item that you can create in the Windows
system tray

TabBar manages a set of TabBtn objects

TabBtn brings forward an associated SubForm

TabButton represents a tab or button in a TabControl

TabControl represents the standard Windows tab control

TCPSocket provides an interface to TCP/IP sockets

Text displays or prints arbitrary text

Timer generates events at regular intervals

TipField displays pop-up context-sensitive help

ToolBar manages a block of controls including Buttons

ToolButton represents a or button in a ToolControl

ToolControl represents the standard Windows tool control

TrackBar slider control for analogue input/output

TreeView displays a hierarchical list of items

UpDown a pair of arrow buttons

Chapter 1: Introduction 9

Properties A-Z
Property Description

Accelerator specifies keystroke that will generate Select event

Active determines whether object can generate events

Align determines the position of text or for Scroll object

AlignChar specifies a character for column alignment in a Grid

AlwaysShowBorder specifies how the current cell in a Grid is displayed
when the Grid loses focus.

AlwaysShowSelection specifies how the highlighted selection in an object
is displayed when the object loses focus.

APLVersion reports the version of Dyalog APL being run

ArcMode determines how arcs are drawn (Ellipse)

Attach specifies how object is reconfigured when parent is
resized

AutoArrange whether or not items in a ListView are rearranged
automatically

AutoBrowse specifies whether or not functions and variables are
fixed when an OLEClient is created

AutoConf how a child reacts to its parent being resized

AutoExpand whether rows and columns are added to a Grid

BandBorders Specifies whether or not narrow lines are drawn to
separate adjacent bands in a CoolBar

BCol specifies background colour

Bits defines the pattern for a Bitmap, Cursor, or Icon

Border determines whether or not an object has a border

BtnPix associates Bitmaps with Button, Menu and
MenuItem objects

Btns determines the buttons shown in a MsgBox

ButtonsAcceptFocus affects the keyboard handling in a ToolControl

Chapter 1: Introduction 10

Property Description

CalendarCols Specifies the colours used for various elements in
the Calendar object

Cancel used to associate the Esc key with a particular
Button

Caption specifies text in an object

CBits represents the picture in a Bitmap object

CellFonts specifies fonts to be used by the cells in a Grid

CellHeights specifies the heights of the cells in a Grid

CellSelect specifies the type(s) of selection a user can perform
in a Grid

CellSet flags which cells in a Grid have values and which
are empty

CellTypes specifies the type of the cells in a Grid

Cells specifies the widths of cells in a Grid

Changed flags whether or not data in an object has been
changed

CharFormat specifies character formatting in a RichEdit

CharSet specifies the character encoding of a Font object.

CheckBoxes specifies whether or not check boxes are displayed
alongside items in a ListView or TreeView object

Checked determines whether check mark is displayed by
MenuItem

ChildEdge specifies whether or not a CoolBand leaves space
above and below its child window

ChildList reports the types of object that may be children of
an object

CircleToday specifies whether or not a circle is drawn around the
Today date in a Calendar object

Chapter 1: Introduction 11

Property Description

ClassID reports the CLSID of an OLEClient or OLEServer

ClassName specifies the name of the OLE object to which an
OLEClient object is to be connected.

ClipCells specifies whether or not columns of a Grid are
clipped.

CMap defines a colour map for a Bitmap or Icon

ColLineTypes specifies the appearance of vertical grid lines in a
Grid.

ColSortImages specifies the images to be used to display sort
images in the column titles of a Grid.

ColTitle3D specifies the appearance of column titles for a
ListView

ColTitleAlign specifies the alignment of column titles

ColTitleBCol specifies the background colour for column titles

ColTitleDepth specifies the structure of hierarchical column titles
for a Grid

ColTitleFCol specifies the colour of the row titles in a Grid

ColTitles specifies the column titles for a Grid or ListView

Column specifies the width of columns for a multi-column
List

Container the Object Representation of an ActiveXContainer
object

Coord specifies the coordinate system for an object

Cue specifies text displayed in an empty input field

CurCell identifies the current cell in a Grid

CurrentColor Specifies the currently selected colour in a
ColorButton object

CurrentState reports the current state of a TCPSocket object

Chapter 1: Introduction 12

Property Description

CursorObj associates a cursor with an object

CustomColors Specifies the custom colors associated with a
ColorButton object

Decimals specifies the number of decimal places for a Numeric
field

Default nominates a Button to be selected with the Enter
key

DefaultColors Specifies the default colors associated with a
ColorButton object

Depth specifies the structure of items for a TreeView

DevCaps reports the device capabilities of the screen or
printer

Directory specifies the directory for a FileBox

Divider controls the presence or absence of a recessed line in
a ToolControl object

Dragable specifies whether user may drag an object with the
mouse

Dragitems specifies whether user may drag/drop items in a
ListView

Dragitems specifies whether user may drag/drop items in a
ListView

DrawMode provides direct control over the low-level drawing
operation performed by graphical objects

EdgeStyle specifies 3-dimensional appearance

EditLabels specifies whether or not the user may edit the labels
in a ListView or TreeView

Elevated affects the appearance of a CommandLink Button

Encoding specifies how character data are encoded or
translated for a TCPSocket

Chapter 1: Introduction 13

Property Description

EnterReadOnlyCells specifies whether or not the user may visit read-only
cells in a Grid

EvaluationDays
Specifies the number of days before the evaluation
version of a Dyalog APL application expires.
PocketAPL only.

Event associates an event with a callback funtion or ⎕DQ
termination

EventList reports names of events generated by an object

ExportedFns specifies the functions to be exposed as methods by
an OLEServer object

ExportedVars specifies the variables to be exposed as properties by
an OLEServer object

FCol specifies foreground colour

FieldType specifies formatting and validation

FileMode specifies the mode (read or write) for a FileBox
object

File specifies a filename

FillCol specifies fill colour

Filters specifies file filters for a FileBox

FirstDay specifies the day that is considered to be the first
day of the week for a Calendar object

Fixed specifies whether a font is fixed-width or
proportional

FixedOrder specifies whether or not the CoolBar displays
CoolBands in the same order

FlatSeparators specifies whether or not separators are drawn
between buttons in a TabControl object

FontList provides a list of available fonts

FontObj specifies the font to be used

Chapter 1: Introduction 14

Property Description

Formats data formats currently available from the Clipboard
object

Formatstring defines a ⎕FMT specification to be used to format a
numeric value

FStyle specifies fill style

FullRowSelect
specifies whether or not the entire row is
highlighted when an item in a ListView or a
TreeView is selected

GridBCol specifies the background colour for a Grid

GridFCol specifies the colour of (all) grid lines for a Grid

GridLineFCol specifies grid line colours for a Grid

GridLine specifies grid line widths for a Grid

GridLines specifies whether or not lines are displayed between
items in a ListView object

GripperMode specifies whether or not a CoolBand has a gripper
bar

HAlign specifies horizontal text alignment

Handle Returns the window handle of an object

HasApply Specifies whether or not a PropertySheet has an
Apply button

HasButtons Specifies whether or not a TreeView object displays
buttons

HasHelp Specifies whether or not a Help button is displayed
or active

HasLines Specifies whether or not a TreeView object displays
tree lines

HasTicks Specifies whether or not tick marks are displayed in
a TrackBar

Chapter 1: Introduction 15

Property Description

HasToday Specifies whether or not the Today date is displayed
in the bottom left corner of a Calendar object

Header specifies whether or not column titles are displayed
in a ListView

HeaderImageIndex Specifies the images for each column title in a
ListView

HeaderImageList Specifies the images for column titles in a ListView

HelpButton specifies whether or not a question (?) button
appears in the title bar of a Form

HelpFile reports the name of a help file associated with an
OLE Control

HighlightHeaders
Specifies whether or not row and column headings
in a Grid are highlighted to indicate the current
selection

HintObj specifies the object in which to display the Hint

Hint specifies the text for a context sensitive help
message

HotSpot specifies the hotspot for a Cursor

HotTrack
specifies whether or not the tabs or buttons in a
TabControl object are automatically highlighted by
the mouse pointer

HScroll determines whether an object has a horizontal
scrollbar

IconObj associates an Icon with a minimized Form

ImageCount Reports the number of images in an ImageList

ImageIndex Maps images in an ImageList to items in a ListView
or TreeView

ImageListObj Associates an ImageList with a ListView or
TreeView

Index position of items in Combo or List, or selected filter
in a FileBox

Input names of objects associated with cells of Grid

Chapter 1: Introduction 16

Property Description

InputMode specifies the behaviour of cursor keys etc. in a Grid

InputModeKey specifies the key used to switch to Incell editing in
a Grid

InputProperties

Specifies the mapping between the Values property
of a Grid and properties of external objects
(ActiveX controls and .NET classes) which are
displayed in Grid cells.

Interval frequency with which a Timer generates events

Italic specifies whether or not a font is italic

Items list of items

ItemGroups specifies item groupings for a ListView object

ItemGroupMetrics specifies caption, colours and spacing for grouped
items in a ListView object

Justify determines how text is justified within an object

KeepBits determines how Bitmap objects are stored in the
workspace

KeepOnClose determines whether or not namespaces are retained
when their GUI components are destroyed

LastError provides information about the most recent error
reported by OLE

Limits specifies minimum and maximum values for an
object

LocalAddrName specifies the host name of your computer

LocalAddr specifies the IP address of your computer

Locale
specifies the language in which the OLE server,
attached to an OLEClient, exposes its methods and
properties

LocalPortName specifies the port name of the local service that you
wish to offer as a TCP/IP server

Chapter 1: Introduction 17

Property Description

LocalPort identifies the port number associated with a
TCPSocket object

LStyle specifies line style

LWidth specifies line width

MapCols
specifies whether button colours in bitmaps and
icons in an ImageList are re-mapped to reflect the
users colour preferences

Masked specifies the type of image in an ImageList

Mask specifies the mask for a Cursor or Icon

MaxButton determines whether or not a Form has a "maximize"
button

MaxDate specifies the largest date that may be displayed by a
Calendar object

MaxLength specifies the maximum number of characters that the
user may enter into an object

MaxSelCount specifies the maximum number of contiguous days
that the user may select in a Calendar object

MDIActive specifies the name of the active SubForm in an MDI
application

MDIActiveObject specifies a ref to the active SubForm in an MDI
application

MDIMenu nominates a particular Menu to be the MDI
application menu

Metafile accesses clipboard data in Windows Metafile format

MethodList reports the names of methods provided by an OLE
Control

MinButton determines whether a Form has a "minimize" button

Chapter 1: Introduction 18

Property Description

MinDate Specifies the smallest date that may be displayed by
a Calendar object

MonthDelta
specifies the number of months by which a
Calendar object scrolls when the user clicks its
scroll buttons

Moveable determines whether a Form may be moved on the
screen

MultiColumn specifies whether or not a List displays items in
more than one column

MultiLine

determines whether or not the tabs or buttons will
be arranged in multiple flights or multiple
rows/columns in a TabControl or ToolControl
object

MultiSelect specifies whether or not the user can select more
than one button in a TabControl at the same time

NewLine specifies whether or not a CoolBand starts a new
row in a CoolBar

Note specifies additional text for a CommandLink Button

OLEControls reports the names of OLE Controls installed on the
computer

OnTop
specifies that a Form is permanently raised to the
front or specifies the level at which a graphic is
drawn on a Grid

Orientation specifies the orientation of the Printer

OtherButton
Specifies whether or not a ColorButton object
displays an Other button, that allows access to
custom colours.

OverflowChar specifies the character to be displayed in a Grid cell
to indicate that its contents will not fit

Page specifies the width of the paper for a RichEdit

PageActive specifies the name of the current PropertyPage in a
PropertySheet

Chapter 1: Introduction 19

Property Description

PageActiveObject specifies a ref to the current PropertyPage in a
PropertySheet

PageSize specifies the size of the thumb in a scrollbar

ParaFormat specifies paragraph formatting for a RichEdit

Password specifies the symbol for a password field

Picture specifies a BitMap, Icon or Metafile object to be
drawn

PName specifies the device for a Printer object, or the face
name for a Font

Points specifies points for graphical objects

Popup specifies the name of a (popup) Menu object that is
associated with a ToolButton

Posn specifies the position of an object within its parent

PrintList reports the list of installed printers

ProgressStyle specifies the appearance of a ProgressBar control

PropList reports the list of properties applicable to the object

QueueEvents specifies how events are handled for an instance of
an OCXClass object (an ActiveX control)

Radius specifies the radius for a Circle

Range specifies the range of a scrollbar

ReadOnly specifies whether or not the user may change data in
an Edit orSpinner, or the State of a Button

RealSize specifies the size of a placeable Metafile

Redraw specifies whether or not an object is automatically
redrawn when required

RemoteAddrName specifies the host name of the remote computer to
which you wish to make a TCP/IP connection

RemoteAddr identifies the port number associated with a service
on a remote computer

Chapter 1: Introduction 20

Property Description

RemotePortName specifies the port name of the remote service to
which you wish to make a TCP/IP connection

RemotePort identifies the port number associated with a service
on a remote computer

ReportBCol specifies background colours for items in a ListView
in Report View

ReportImageIndex specifies images for individual column titles in a
ListView in Report View

ReportInfo specifies additional information for a ListView

ResizeCols specifies whether or not the user may alter the width
of columns in a Grid by dragging

ResizeColTitles specifies whether or not the user may alter the
height of the column titles in a Grid by dragging

ResizeRows specifies whether or not the user may alter the
height of rows in a Grid by dragging

ResizeRowTitles specifies whether or not the user may alter the width
of the row titles in a Grid by dragging

Rotate specifies the angle of rotation for a font

RowHiddenDepth identifies which rows in a Grid are hidden

RowLineTypes specifies the appearance of horizontal grid lines in a
Grid.

Rows number of rows displayed in drop-down list of a
Combo

RowTitleAlign specifies the alignment of the row titles in a Grid

RowTitleBCol specifies the background colour for row titles

RowTitleDepth specifies the structure of hierarchical row titles in a
Grid

RowTitleFCol specifies the colour of the row titles in a Grid

Chapter 1: Introduction 21

Property Description

RowTitles specifies the row titles for a Grid

RowTreeDepth specifies the structure of rows for a Grid

RowTreeImages specifies the images (bitmaps) for the treeview items
in a Grid

RowTreeStyle specifies the appearance of treeview items in a Grid

RTFText specifies the contents of an object in Rich Text
Format

RunMode specifies the way in which an OLEServer object
serves multiple clients

ScrollOpposite specifies that unneeded tabs scroll to the opposite
side of a TabControl

SelDate identifies the range of dates that is currently selected
in a Calendar object

SelectionBorderWidth specifies the width of the border drawn around the
block of selected cells in a Grid

SelectionColor specifies the colour of the block of selected cells in
a Grid

SelectionColorAlpha specifies the transparency of the block of selected
cells in a Grid

SelImageIndex specifies which images in an ImageList are used to
identify selected items in a TreeView

SelItems specifies the selected item(s) in an object.

SelRange specifies the selected range in a TrackBar

SelText specifies the selected text in an Edit or Combo

ServerVersion specifies the version number of an OLEServer
object

ShowCaptions specifies whether or not the captions of individual
ToolButton objects are drawn

ShowCueWhenFocused specifies whether or not a Cue is displayed when the
input field receives the input focus

Chapter 1: Introduction 22

Property Description

ShowDropDown
specifies whether or not a drop-down menu symbol
is drawn in a ColorButton or alongside ToolButton
objects

ShowInput determines how Combo and Button objects
associated with cells of a Grid are displayed

ShowSession
specifies whether or not the APL Session window is
displayed when an OLEServer object is started by
an OLE client

ShowThumb specifies whether or not the thumb is displayed in a
TrackBar

SingleClickExpand specifies whether or not an item in a TreeView
control is expanded when the user selects the item

SIPMode specifies the behaviour of the Input Panel
(PocketAPL only)

SIPResize specifies the resize behaviour of a Form when the
Input Panel is raised and lowered (PocketAPL only)

Sizeable specifies whether user may resize an object using the
mouse

Size specifies the size of an object

SocketNumber reports the Window handle of the socket attached to
the TCPSocket object

SocketType specifies the type of the TCP/IP socket for a
TCPSocket object.

SortItems specifies whether or not the items in a List object
are sorted.

SplitObj1 specifies the name of an object managed by a
Splitter

SplitObj2 specifies the name of an object managed by a
Splitter

Start specifies start angles for arcs of Circle and Ellipse
objects

State specifies the state of a Button or Form

Chapter 1: Introduction 23

Property Description

Step increments for movement

Style specifies the style of an object

SysMenu determines whether a Form has a standard system
menu

TabFocus specifies the focus behaviour for the TabControl
object

TabIndex Specifies the tabbing order for controls

TabJustify Specifies the positions at which the picture and
caption are drawn within a TabButton

TabObj specifies name of SubForm associated with a TabBtn

TabSize specifies the size of fixed size tabs or buttons in a
TabControl object

TargetState reports the intended final state of a TCPSocket
object

Text specifies/reports the text in an Edit, MsgBox, or
Combo

TextSize reports the bounding rectangle for text

Thumb specifies the position of the thumb in a scrollbar

ThumbRect reports the extents of the thumb in a TrackBar

TickAlign specifies the alignment of tick marks in a TrackBar

TickSpacing specifies the spacing of tick marks in a TrackBar

TipObj specifies the object in which to display the Tip

Tip specifies the text for a pop-up help message

TitleHeight specifies the height of the column titles in a Grid

Title specifies the width of the row titles in a Grid

Today specifies today's date in a Calendar object

ToolboxBitmap reports the bitmap image associated with an OLE
Control

Chapter 1: Introduction 24

Property Description

TrackRect reports the extents of the slider in a TrackBar

Translate specifies whether or not an object performs
⎕AVtranslation

Transparent specifies whether or not a ToolControl is
transparent

TypeLibFile reports the name of the file in which the Type
Library for an OLEServer object is stored

TypeLibID
reports the value of the globally unique identifier
(GUID) of the Type Library associated with an
OLEServer object.

TypeList reports the names of data types associated with an
OLE Control

Type specifies the type of an object

Underline specifies whether or not a font is underlined

UpperCase specifies that property names are to be reported in
uppercase

ValidIfEmpty specifies whether or not an empty Edit object is
deemed to be valid

VAlign specifies vertical text alignment

Value value of a number, date or time in an Edit or Label
object

Values the data matrix in a Grid

VariableHeight
specifies whether or not a CoolBar displays bands
at the minimum required height, or all the same
height

View specifies how items in a ListView are arranged

Visible specifies whether or not an object is currently
visible

Chapter 1: Introduction 25

Property Description

VScroll specifies whether or not an object has a vertical
scrollbar

WantsReturn specifies how the Enter key is treated by an edit box

WeekNumbers specifies whether or not a Calendar object displays
week numbers

Weight specifies the weight (boldness) of a font

WordFormat specifies word formatting for a RichEdit

Wrap specifies whether or not an object wraps its contents

XRange specifies origin and scale on the x-axis

Yield specifies how frequently Dyalog APL/W yields
control

YRange specifies origin and scale on the y-axis

Chapter 1: Introduction 26

Events A-Z
Event Num Description

ActivateApp 137 User has switched to/from the APL
application.

AddCol 153 appended a column to a Grid object.

AddRow 152 appended a row to a Grid object

AmbientChanged 533
reported when any of the ambient properties
change in an application hosting an
ActiveXControl object.

BadValue 180 attempted to leave Edit object with invalid
text

BalloonHide 862 reported when a BalloonTip is displayed

BallonShow 861 reported when a BalloonTip disappears

BalloonTimeout 863 reported when a BalloonTip is dismissed

BalloonUserClick 864 reported when a BalloonTip is clicked

BeginEditLabel 300 signals the start of an edit operation in a
ListView or TreeView object

CalendarDblClick 273 reported when the user double-clicks the left
mouse button over a Calendar object

CalendarDown 271 reported when the user depresses the left
mouse button over a Calendar object

CalendarMove 274 reported when the user moves the left mouse
button over a Calendar object

CalendarUp 272 reported when the user releases the left
mouse button over a Calendar object

CellChanged 164 modified and updated the contents of a cell
in a Grid object

CellChange 150 modified the contents of a cell in a Grid
object

CellDblClick 163 double-clicked the mouse on a cell in a Grid

CellDown 161 depressed a mouse button over a cell in a
Grid

Chapter 1: Introduction 27

Event Num Description

CellError 157 input invalid data into a cell in a Grid

CellMove 151 moved to a new cell in a Grid object

CellOver 160 mouse moved over a cell in a Grid object

CellUp 162 released a mouse button over a cell in a Grid

Change 36 altered the text in an Edit or Combo

ClipChange 120 data in the clipboard has changed

Close 33 Form is about to be closed

ColorChange 430 user has selected a colour in a ColorButton

ColumnClick 320 user has clicked on a heading in a ListView.

Configure 31 position and/or size of an object is about to
change

Create 34 reported after an object has been created

DDE 50 DDE message has been received or sent

DisplayChange 137 user has changed screen resolution or
number of colours

DragDrop 11 moved an object using drag & drop
operation

DropFiles 450 user has drag/dropped a file icon onto an
object

DropObjects 455
user has drag/dropped an object icon from
the Workspace Explorer or Find Objects tool
onto an object

DyalogCustomMessage1 95
allows external applications and dynamic
link libraries to insert events into the Dyalog
APL/W message queue

EndEditLabel 301 signals completion of an edit operation in a
ListView or TreeView object

EndSplit 282
reported when user releases the left mouse
button to signify the end of a drag operation
on a Splitter object

ExitApp 132 selected End Task from the Windows Task
List

Chapter 1: Introduction 28

Event Num Description

ExitWindows 131 requested Windows to terminate

Expanding 302 reported by a TreeView object as it is about
to expand

Expose 32 exposed part or all of a Form or a Static

FileBoxCancel 72 selected the Cancel button in a FileBox

FileBoxOk 71 selected the Ok button in a FileBox

GetDayStates 266 reported when a Calendar object requires the
APL program to provide state information

GotFocus 40 object has received the input focus

GridCopy 191 copies selected cells of a Grid to the
clipboard

GridCut 190 copies selected cells of a Grid to the
clipboard and clears them

GridDelete 193 clears selected cells of a Grid

GridDropSel 195 user has drag/dropped a block of cells in a
Grid

GridPaste 192 pastes data from the clipboard into a Grid

GridPasteError 194 generated by an invalid paste operation in a
Grid

GridSelect 165 user has changed the selection in a Grid

Help 400 user has clicked the Question (?) button and
then clicked on an object

HScroll 39 requested movement in horizontal scrollbar
of Form

HThumbDrag 442 user has dragged the thumb of the horizontal
scrollbar of a Form or SubForm

Idle 130 generated when system is idle

IndexChanged 210 user has scrolled the data in a Grid so that
the value of its Index property has changed.

Chapter 1: Introduction 29

Event Num Description

ItemDblClick 342 user has double-clicked on an item in a
ListView or TreeView object

ItemDown 340
user has depressed the left mouse button
over an item in a ListView or TreeView
object

ItemUp 341 user has released the left mouse button over
an item in a ListView or TreeView object

KeyError 23 pressed an invalid key on the keyboard

KeyPress 22 pressed a key on the keyboard

Locator 80 terminated interaction with a Locator object

LostFocus 41 object has lost the input focus

MDIActivate 42 MDI SubForm becomes the active one

MDIDeactivate 43 MDI SubForm is deactivated

MouseDblClick 5 double-clicked a mouse button

MouseDown 1 pressed mouse button down

MouseEnter 6 moved the mouse into the object

MouseLeave 7 moved the mouse out of the object

MouseMove 3 user has moved the mouse

MouseUp 2 user released a mouse button

MsgBtn1 61 user selected first button in a MsgBox

MsgBtn2 62 user selected second button in a MsgBox

MsgBtn3 63 user selected third button in a MsgBox

PageActivate 360 user has switched to a new PropertyPage

PageApply 350 user has clicked Apply in a PropertySheet

PageBack 353 user has clicked Back in a PropertySheet

PageCancel 351 user has clicked Cancel in a PropertySheet

Chapter 1: Introduction 30

Event Num Description

PageChanged 356 user has altered Changed property of a
PropertyPage

PageDeActivate 361 user has switched to a new PropertyPage

PageFinish 355 user has clicked Finish in a PropertySheet

PageHelp 352 user has clicked Help in a PropertySheet

PageNext 354 user has clicked Next in a PropertySheet

PreCreate 534 Reported when an instance of an
ActiveXControl is created

Protected 470 user has attempted to alter protected text in a
RichEdit object.

Retracting 304 reported by a TreeView object as it is about
to retract

Scroll 37 requested a movement of the thumb in
scrollbar

SelDateChange 265 reported when the user changes the date that
is selected in a Calendar object

Select 30 user has selected the object

SetColSize 176 generated when column width changes in a
Grid

SetItemPosition 322 generated when the user drag-drops an item
in a ListView

SetRowSize 175 generated when row height changes in a
Grid

SetSpinnerText 421 user has clicked a spin button in a Spinner
object

SetWizard 365 user has clicked Next or Back in a
PropertySheet

Spin 420 user has clicked a spin button in a Spinner
object

Splitting 281
reported while a Splitter object is being
dragged, between a StartSplit and an
EndSplit

Chapter 1: Introduction 31

Event Num Description

StartSplit 280 reported when the user depresses the left
mouse button over a Splitter object

StateChange 35 Form is about to change state

SysColorChange 134 system colour scheme has changed

TCPAccept 371 reported when a client connects to a server
TCPSocket object

TCPClose 374 reported when the remote end of a TCP/IP
connection breaks the connection.

TCPConnect 372
reported when a server accepts the
connection of a client TCPSocket object and
is reported by the client

TCPError 370 generated when a fatal TCP/IP error occurs
and is reported by a TCPSocket object

TCPGotAddr 377
reported when a host name (specified by the
RemoteAddrName or LocalAddrName
property) is resolved to an IP address

TCPGotPort 378
reported when a port name (specified by the
RemotePortName or LocalPortName
property) is resolved to a port number

TCPReady 379
reported when the TCP/IP buffers are free
and there is no data waiting to be sent in the
internal APL queue

TCPRecv 373 reported when data is received by a
TCPSocket object

ThumbDrag 440 user is dragging the thumb in a TrackBar

Timer 140 event generated by a Timer object

VScroll 38 requested movement in vertical scrollbar of
Form

VThumbDrag 441 user has dragged the thumb of the vertical
scrollbar of a Form or SubForm

WinIniChange 133 WIN.INI has changed

WorkspaceLoaded 525 Reported when a workspace is loaded

Chapter 1: Introduction 32

Methods A-Z
Method Num Description

Abort 103 abort a print job

AddChildren 310 adds child items to an item in a TreeView

AddItems 308 adds items to a TreeView

CancelToClose 367 changes the buttons in a PropertySheet

CellFromPoint 200 converts from Grid coordinates to cell
coordinates

ChooseFont 240 displays the standard Windows font selection
box

ColChange 159 sets new values for a column of cells in a Grid

ColSorted 174 sets the sort image to be displayed in the
column title of a Grid

DateToIDN 264 Converts a date from ⎕TS format into an IDN
suitable for use in a Calendar object

DelCol 155 deletes a column from a Grid object

DeleteChildren 311 deletes child items from a parent item in a
TreeView

DeleteItems 309 deletes items from a TreeView

DelRow 154 deletes a row from a Grid object

Detach 270 detaches the GUI component from an object

DuplicateColumn 154 Duplicates a column in a Grid object

DuplicateRow 154 Duplicates a row in a Grid object

FileRead 90 causes a graphical object to be read from a file

FileWrite 91 causes a graphical object to be written to a file

Flush 135 flushes all pending output

GetCellRect 201 obtains the extents of a particular Grid cell

Chapter 1: Introduction 33

Method Num Description

GetCommandLine 145 obtains the entire command line that was used
to start Dyalog APL

GetCommandLineArgs 148
obtains the command line and arguments (as a
nested vector) that was used to start Dyalog
APL

GetEventInfo 551 obtains information about an OLE Control
event

GetFocus 511 obtains the name of the object that currently
has the input focus

GetItemHandle 313 obtains the window handle of an item in a
TreeView

GetItemPosition 323 obtains the position of an item in a ListView

GetItemState 306 obtains the status of an item in a TreeView

GetMethodInfo 552 obtains information about an OLE Control
method

GetMinSize 275
Obtains the minimum size that you must
specify for a Calendar object for it to display a
complete month

GetParentItem 312 obtains the index of the parent of an item in a
TreeView

GetPropertyInfo 550 obtains information about an OLE Control
property

GetTypeInfo 550 obtains information about an OLE Control
data type

GetVisibleRange 262 Obtains the range of dates that is currently
visible in a Calendar object

IDNToDate 263 Used to convert a date from an IDN into ⎕TS
format

LockColumns 227 Locks/unlocks columns in a Grid object

LockRows 227 Locks/unlocks rows in a Grid object

MakeGIF 261 Generates a GIF representation of a picture
from a Bitmap object

Chapter 1: Introduction 34

Method Num Description

MakePNG 260 Generates a PNG representation of a picture
from a Bitmap object

MDIArrange 112 MDIClient to arrange minimised SubForm
icons

MDICascade 110 MDIClient to overlap its SubForms

MDITile 111 MDIClient to rearrange SubForms in row or
column

NameFromHandle 136 obtains the name of an object from its handle

NewPage 102 throws a new page on a Printer

OLEAddEventSink 540 Connects a named event sink to a COM object

OLEDeleteEventSink 541 Disconnects a named event sink from a COM
object

OLEListEventSinks 542 Returns the names of event sinks that are
currently connected to a COM object

OLEQueryInterface 543
Used to obtain the methods and properties
associated with a particular interface that is
provided by a COM object

OLEUnregister 531 used to unregister an OLEServer object that
has previously been saved by Dyalog APL

Print 100 spools Printer output

ProgressStep 250 increments the thumb in a ProgressBar

RowChange 158 sets new values for a row of cells in a Grid

RTFPrint 461 prints the contents of a RichEdit

RTFPrintSetup 460 displays a print setup dialog box

SetCellType 156 changes CellTypes property for a cell in a
Grid

SetEventInfo 547 Used to register an event that may be
generated by an ActiveXControl object

SetFnInfo 545
Used to describe an APL function that is to be
exported as a method, or as a property, of an
ActiveXControl object

Chapter 1: Introduction 35

Method Num Description

SetItemImage 315 allocates a picture icon to an item in a
TreeView

SetItemState 307 sets the status of an item in a TreeView

SetMethodInfo 546 Used to describe a method that is exported by
a COM object

SetPropertyInfo 554 Used to describe a property that is exported by
a COM object

Setup 101 displays printer setup dialog box

SetVarInfo 546
Used to describe an APL variable that is to be
exported as a property of an ActiveXControl
object

ShowBalloonTip 860 displays a BalloonTip

ShowHelp 580 displays the help file associated with an OLE
Control

ShowItem 316 displays a particular item in a TreeView

ShowProperties 560 displays the property sheet associated with an
OLE Control

ShowSIP 25 Raise or lowers the Input Panel (Pocket APL
only)

TCPGetHostID 376 obtains the IP Address of your PC

TCPSend 375 used to send data to a remote process
connected to a TCPSocket object

TCPSendPicture 380 Transmits a picture represented by a Bitmap
object to a TCP/IP socket

Undo 170 reverses last change made to a Grid object

Chapter 1: Introduction 36

Native Look and Feel
Windows Native Look and Feel is an optional feature ofWindows fromWindows
XP onwards.

IfNative Look and Feel is enabled, user-interface controls such as Buttons take on a
different appearance and certain controls (such as the ListView) provide enhanced
features.

Dyalog Session
During development, both the Dyalog Session and the Dyalog APL GUI will display
native style buttons, combo boxes, and other GUI components ifNative Look and
Feel is enabled. The option is provided in the General tab of the Configuration
dialog.

Applications
There are two ways to enable Native Look and Feel in end-user applications.

If you use the File/Export… menu item on the Session MenuBar to create a bound
executable, an OLE Server (in-process or out-of-process), an ActiveX Control or a
.Net Assembly, check the option box labelled Enable Native Look and Feel in the
create bound file dialog box. See User Guide.

If not, set the XPLookandFeel parameter to 1, when you run the program. For exam-
ple:

dyalogrt.exe XPLookAndFeel=1 myws.dws

Note that to have effect,Native Look and Feelmust also be enabled at the Win-
dows level.

Chapter 2: A-Z Reference 37

Chapter 2:

A-Z Reference

This chapter provides a complete reference in alphabetical order to the objects, prop-
erties, events and methods through which Dyalog APL supports the Graphical User
Interface.

Chapter 2: A-Z Reference 38

Abort Method 103
Applies To: Printer

Description

This method causes the print job to be aborted and all pending output to be dis-
carded.

The Abort method is niladic.

If you attach a callback function to this method and have it return a value of 0, the
print job will continue.

Accelerator Property
Applies To: ActiveXControl, Bitmap, Button, ButtonEdit, Calendar, Circle,

Clipboard, ColorButton, Combo, ComboEx, Cursor,
DateTimePicker, Edit, Ellipse, Form, Grid, Group, Icon, Image,
Label, List, ListView, Locator, Marker, MDIClient, Menu,
MenuItem, Metafile, Poly, Printer, ProgressBar, Rect, RichEdit,
Scroll, Spinner, Static, StatusBar, StatusField, SubForm, TabBar,
TabBtn, TabButton, Text, ToolBar, ToolButton, TrackBar,
TreeView, UpDown

Description

This property specifies a keystroke that, when pressed by the user, will generate a
Select event on an object. It applies to all objects whether or not they posses a "nat-
ural" Select event. You can therefore associate a keystroke with an arbitrary action
on any object you desire.

The Accelerator property is a 2-element integer vector. The first element is a key
number which is the number by which Windows knows the key. The second element
is the shift state which is the sum of 1 (Shift key), 2 (Control key) and 4 (Alt key).

For example, to attach the keystroke Ctrl+A to an object, you would set its Accel-
erator to (65 2). To attach the keystroke Shift+Ctrl+F1 (key number 112), you would
set its Accelerator to (112 3). Key numbers may be obtained by displaying the mes-
sages generated by the KeyPress event.

Note that a keystroke used as an Accelerator will not generate a KeyPress event.

Chapter 2: A-Z Reference 39

AcceptFiles Property
Applies To: ActiveXControl, Animation, Button, ButtonEdit, Combo,

ComboEx, DateTimePicker, Edit, Form, Grid, Group, Image, Label,
List, ListView, ProgressBar, PropertyPage, RichEdit, Scroll, SM,
Spinner, Static, StatusBar, SubForm, TabBar, ToolBar, TrackBar,
TreeView, UpDown

Description

The AcceptFiles property is Boolean and specifies whether or not an object will
accept a file drag/drop operation. Its default value is 0. If set to 1, the object will
report a DropFiles event when file icons are dropped on it.

ActivateApp Event 137
Applies To: Root

Description

If enabled, this event is reported when the user switches to or from a Dyalog APL/W
application.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 3-element vector as follows :

[1] Object ref or character vector

[2] Event 'ActivateApp' or 137

[3] Activation flag 0 or 1

The Activation flag is 0 when the user switches from Dyalog APL to another appli-
cation.

The Activation flag is 1 when the user switches to Dyalog APL from another appli-
cation.

Chapter 2: A-Z Reference 40

Active Property
Applies To: ActiveXControl, Animation, Button, ButtonEdit, Calendar,

ColorButton, Combo, ComboEx, DateTimePicker, Edit, Form, Grid,
Group, Label, List, ListView, Menu, MenuItem, ProgressBar,
PropertyPage, PropertySheet, RichEdit, Scroll, Spinner, Splitter,
Static, StatusBar, SubForm, TabBar, TabBtn, Text, Timer, ToolBar,
ToolButton, TrackBar, TreeView, UpDown

Description

This property specifies whether or not an object is currently responsive to user
actions. It is a single number with the value 0 (object is inactive and does not gen-
erate events) or 1 (object is active and capable of generating events). The default is 1.

Setting Active to 0 disables the object (and all its children), even though the object
may be referenced in the argument to ⎕DQ. It is therefore possible to deactivate an
object from a callback function.

In general, the text associated with an object whose Active property is 0 is displayed
in grey.

ActiveXContainer Object
Purpose: The ActiveXContainer object represents the application that is

currently hosting an instance of an ActiveXControl object.

Parents ActiveXControl

Properties Type, Event, FontObj, FCol, BCol, Data, KeepOnClose,
MethodList, ChildList, EventList, PropList

Methods Detach, OLEQueryInterface

Events Close, Create, AmbientChanged

Description

An ActiveXContainer is used to represent the host application that is hosting an
ActiveXControl object, and provides access to its ambient properties such as font,
and colour.

An ActiveXContainer object is created using the Container property of the Activ-
eXControl object.

Chapter 2: A-Z Reference 41

For example, the following expression , executed within an ActiveXControl instance
creates an ActiveXContainer named 'CONT'

'CONT' ⎕NS ⎕WG'Container'

The ambient properties of the host application are reported by the FontObj, Fcol and
Bcol properties which are all read-only.

The ActiveXContainer object supports the AmbientChanged event which is reported
when any of the ambient properties change. This event allows the ActiveXContainer
to react to such changes.

ActiveXControl Object
Purpose: The ActiveXControl object represents a Dyalog APL namespace as

an ActiveX control.

Parents Form

Children ActiveXContainer, Animation, Bitmap, BrowseBox, Button,
ButtonEdit, Calendar, Circle, Clipboard, ColorButton, Combo,
ComboEx, CoolBar, Cursor, DateTimePicker, Edit, Ellipse,
FileBox, Font, Form, Grid, Group, Icon, Image, ImageList, Label,
List, ListView, Locator, Marker, MDIClient, Menu, MenuBar,
Metafile, MsgBox, OCXClass, OLEClient, OLEServer, Poly,
Printer, ProgressBar, PropertySheet, Rect, RichEdit, Scroll, Spinner,
Splitter, Static, StatusBar, SubForm, TabBar, TabControl,
TCPSocket, Text, Timer, TipField, ToolBar, ToolControl, TrackBar,
TreeView, UpDown

Properties Type, ClassName, Posn, Size, Coord, Border, Active, Visible,
Event, Dragable, FontObj, FCol, BCol, Picture, CursorObj,
AutoConf, YRange, XRange, Data, TextSize, EdgeStyle, Handle,
Translate, Accelerator, AcceptFiles, ClassID, Container,
KeepOnClose, HelpFile, ToolboxBitmap, TypeLibID, TypeLibFile,
LastError, Redraw, TabIndex, MethodList, ChildList, EventList,
PropList

Methods Detach, ChooseFont, GetTextSize, Animate, GetFocus, ShowSIP,
SetFnInfo, SetVarInfo, SetEventInfo

Events Close, Create, FontOK, FontCancel, DragDrop, Configure,
ContextMenu, DropFiles, DropObjects, Expose, Help, KeyPress,
GotFocus, LostFocus, MouseDown, MouseUp, MouseMove,
MouseDblClick, MouseEnter, MouseLeave, MouseWheel,
AmbientChanged, Select, PreCreate

Chapter 2: A-Z Reference 42

Description

The ActiveXControl object represents a Dyalog APL namespace as an ActiveX con-
trol.

During development, an ActiveXControl is a container object that is the child of a
Form and acts as a wrapper for one or more other GUI objects.

To make an ActiveXControl available to another application, you must selectMake
OCX from the Session Filemenu. This creates an .OCX file that contains your entire
workspace and all of the ActiveXControls within it.

Once an ActiveXControl has been saved in an .OCX file, any application that sup-
ports ActiveX may create and use instances of it.

When an ActiveX control is loaded by a host application, it and any code that it
requires, is loaded into the host application's address space; it does not run in a sep-
arate address space.

During development, an ActiveXControl is powered by the development version of
Dyalog APL. However, an ActiveXControl object that is loaded by a host appli-
cation, is powered by a DLL version of Dyalog APL. This automatically gets loaded
when a host application creates the first instance of any Dyalog APL ActiveX con-
trol. However, within a single host application, other instances of the same or other
Dyalog APL ActiveX controls share the same copy of DYALOG.DLL.

Like the development and run-time versions of Dyalog APL, DYALOG.DLL has an
active workspace. When an application loads an ActiveXControl, DYALOG.DLL
copies the top-level namespace that owns the ActiveXControl, together with every-
thing it contains, into the active workspace. For example, if the ActiveXControl is
named Controls.Form1.Ctrl1, the act of creating the first instance of Ctrl1
will cause the entire contents of the Controls namespace to be copied, from the cor-
responding .OCX file, into the active workspace. This affords the potential for con-
trols from different OCX files to clash, but the name clash conflict is restricted to just
one name.

Each instance of an ActiveXControl, is represented by a separate namespace which is
automatically cloned from the original ActiveXControl namespace. Each instance
namespace is entirely separate from any other instance namespace and there is no
way for one instance to reference or see any other instance; nor can it reference the
original class namespace fromwhich it was cloned. In fact, each instance appears to
itself to be the one and only original class namespace. Using the previous example,
each instance of Ctrl1 believes that its full pathname is
#.Controls.Form1.Ctrl1, although each instance is in fact a separate clone of
that namespace.

Chapter 2: A-Z Reference 43

When an application creates an instance of an ActiveXControl, it does so as the child
of some object within its own GUI hierarchy. From the instance's viewpoint, its par-
ent Form is replaced by a different GUI object that imposes position, size, font, back-
ground colour, and other ambient properties.

The external name of an ActiveXControl is made up of the character vector defined
by the ClassName property, prefixed by the string "Dyalog ", and followed by the
string " Control". If ClassName is empty (which is the default), the name of the Activ-
eXControl namespace is inserted instead. Note that the name should not include APL
symbols such as ∆.ClassName may only be specified when you create the Activ-
eXControl with ⎕WC and may not be changed using ⎕WS.

The Coord property is read-only and its value is always 'Pixel'. If you wish to use
a different co-ordinate system for the children of an ActiveXControl object, it is nec-
essary to set Coord separately on each one of them.

Posn and Size are negotiable properties. When an instance of the ActiveXControl is
created, the values of Posn and Size will be assigned by the host application. You
may change these values using ⎕WS, but the host application has the right to refuse
them and there is no guarantee that you will get what you set.

The Border and EdgeStyle properties may be used to control the outline appearance
of the ActiveXControl object.

The Dragable and KeepOnClose properties apply only during development and are
otherwise ignored.

The ToolBoxBitmap property specifies the name of a Bitmap object that may be used
by a host application to represent the ActiveXControl when its complete visual
appearance is not required.. For example, if you add an ActiveX control to the Micro-
soft Visual Basic development environment, its bitmap is added to the toolbox. The
Bitmap should therefore be of an appropriate size, usually 24 x 24 pixels.

The Container property provides access to an ActiveXContainer object that rep-
resents the host application itself. This may be used to obtain the values of ambient
properties, or to access methods exposed by the host application via OLE interfaces.

When an instance of an ActiveXControl is created, it generates first a PreCreate
event, and then a Create event. The PreCreate event is generated at the point the
instance is made.

The Create event is generated at the point when the host application requires the
instance to appear visually. If, as is recommended, you create child controls of the
instance when it is created, you must respond to the Create event, because at the time
that PreCreate is generated, the object does not have a window.

Chapter 2: A-Z Reference 44

Host applications which support two different modes of operation, namely design
mode and run mode, differ in the way that they create instances of ActiveX controls.
Microsoft Access does not require an ActiveX control to appear properly in design
mode. Instead, it draws a simple box containing just the name of the object. If your
ActiveXControl is hosted by Microsoft Access, it will get a PreCreate Event when an
instance is created in design mode, and a Create event only when it enters run mode.
Microsoft Visual Basic, however, requires the object to draw itself immediately, even
in design mode, and so a Create event will be generated immediately after a PreC-
reate event in this case.

AddChildren Method 310
Applies To: TreeView

Description

This method is used to add child items to an item in a TreeView object

The argument to AddChildren is a 3, 4 or 5 element array as follows:

[1] Item number Integer.

[2] New items Vector of character vectors.

[3] Depth vector Integer vector.

[4] Picture vector Integer vector.

[5] Selected picture vector Integer vector.

Item number specifies the index of the item to which the child items are to be added.

New items is a vector of character vectors containing the labels for the new child
items.

Depth vector is an integer vector specifying the depth of each of the new items rel-
ative to the parent item to which they are being added. The first element of this array
must be 0.

Picture vector and Selected picture vector are optional and specify values of ImageIn-
dex and SelImageIndex respectively for each of the new items.

The result is the index at which the first new item has been inserted.

Chapter 2: A-Z Reference 45

AddCol Event 153
Applies To: Grid

Description

If enabled, this event is reported by the Grid object if the user presses the Cursor
Right key, and the current cell (CurCell) is within the last column on the Grid. The
default action is to append a new column to the contents of the Grid. If you attach a
callback function to this event and have it return a value of 0, a new column will not
be appended to the Grid. Note that the event will not be generated unless the second
element of the AutoExpand property is set to 1.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 3-element vector as follows :

[1] Object ref or character vector

[2] Event 'AddCol' or 153

[3] Column number number of the new column (integer).

An application may insert a new column into a Grid by calling AddCol as a method.
The argument is a 1 to 7-element array as follows:

[1] Column number: number of the new column (integer)

[2] Column title: character vector or matrix

[3] Column width: integer

[4] Undo flag 0 or 1

[5] Resize flag 0 or 1

[6] Title colour negative integer or 3-element RGB vector

[7] Line type integer

If you are using default column headings, Column title will be ignored and the col-
umns will be re-labelled with the default titles. If you have set ColTitles, the title you
specify will be inserted. If you omit Column title, a blank title will be inserted.

Similarly, if you have not previously set CellWidths, ResizeCols, ColTitleFCol or
ColLineTypes, or if you have given them a scalar value, the corresponding parameter
will be ignored. However, if you have specified CellWidths, ResizeCols, Col-
TitleFCol or ColLineTypes to be a vector, the number you specify in the cor-
responding parameter will be inserted into the appropriate property vector.

Chapter 2: A-Z Reference 46

If you omit to specify Column width for the new column, it will be assigned a default
value; new values for the other properties default to 0.

Undo flag (default 1) specifies whether or not the addition of the new column may
subsequently be undone by an Undo event.

To insert a new column before the first one, you must specify the Column number as
1 (or 0 if ⎕IO is 0). To add a new column after the last one, you may specify any
number greater than the current number of columns. The data in the new column will
be set to 0 if the Values property is numeric, or to an empty character vector other-
wise.

AddComment Method 220
Applies To: Grid

Description

This method is used to add a new comment to a Grid.

The argument to AddComment is a 3, 4 or 5 element array as follows:

[1] Row integer

[2] Column integer

[3] Comment text character array

[4] Height in pixels integer

[5] Width in pixels integer

For example, the following statement associates a comment with the cell at row 2, col-
umn 1; the text of the comment is "Hello", and the size of the comment window is 50
pixels (high) by 60 pixels (wide).

F.G.AddComment 2 1 'Hello' 50 60

Note that if you specify a row number of ¯1, the comment is added to the cor-
responding column title. Similarly, if you specify a column number of ¯1, the com-
ment is added to the corresponding row title.

The height and width of the comment window, specified by the last 2 elements of the
argument are both optional. If the cell already has an associated comment, the new
comment replaces it.

Chapter 2: A-Z Reference 47

You can use a Dynamic Function to add several comments in one statement; for
example:

(1 2)(2 3){F.G.AddComment ⍺,⊂⍵}¨'Hello' 'Goodbye'

Note that just before the comment is displayed, the Grid generates a ShowComment
event which gives you the opportunity to (temporarily) change the text and/or win-
dow size of a comment dynamically.

The comment text specified by the 5th element of the argument to ⎕NQmust be a sim-
ple character scalar, vector, matrix or vector of vectors. Text specified by a simple
character vector will be wrapped automatically if necessary. A matrix or vector of vec-
tors may be used to explicitly specify multi-line text. If the array is a vector whose
first element is an opening brace ({), the text is assumed to be in rich-text format
(RTF) and is displayed accordingly. Note that there is no way for the user to scroll
the text in the comment window and it is entirely your responsibility to ensure that
the size of the window is appropriate for its contents.

AddItems Method 308
Applies To: TreeView

Description

This method is used to add items to a TreeView object

The argument to AddItems is a 3, 4 or 5-element array as follows:

[1] Item number Integer.

[2] New items Vector of character vectors.

[3] Depth vector Integer vector.

[4] Picture vector Integer vector.

[5] Selected picture vector Integer vector.

Item number specifies the index of the item to which the child items are to be added.

New items is a vector of character vectors containing the labels for the new child
items.

Depth vector is an integer vector specifying the depth of each of the new items rel-
ative to the parent item to which they are being added. The first element of this array
must be 0. This element may be omitted. If so, it is assumed to be all 0s.

Chapter 2: A-Z Reference 48

Picture vector and Selected picture vector are optional and specify values of ImageIn-
dex and SelImageIndex respectively for each of the new items.

The new items are inserted with the first one being placed at the same level in the
hierarchy as the item specified in element [1].

The result is an integer that reports the index position at which the first of the new
items has been inserted.

AddRow Event 152
Applies To: Grid

Description

If enabled, this event is reported by the Grid object if the user presses the Cursor
Down key, and the current cell (CurCell) is within the last row on the Grid. The
default action is to append a new row to the contents of the Grid. If you attach a call-
back function to this event and have it return a value of 0, a new row will not be
appended to the Grid.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 3 element vector as follows :

[1] Object ref or character vector

[2] Event 'AddRow' or 152

[3] Row number integer.

An application may insert a new row into a Grid by calling AddRow as a method.
The argument is a 1 to 7-element array as follows:

[1] Row number: integer

[2] Row title: character vector or matrix

[3] Row height: integer

[4] Undo flag 0 or 1

[5] Resize flag 0 or 1

[6] Title colour negative integer or 3-element RGB vector

[7] Line type integer

Chapter 2: A-Z Reference 49

If you are using default row titles, Row title will be ignored and the rows will be re-
labelled with default titles. If you have set RowTitles, the title you specify will be
inserted. If you omit Row title, a blank title will be inserted.

Similarly, if you have not previously set CellHeights, ResizeRows, RowTitleFCol or
RowLineTypes, or if you have given them a scalar value, the corresponding param-
eter will be ignored. However, if you have specified CellHeights, ResizeRows, Row-
TitleFCol or RowLineTypes to be a vector, the number you specify in the
corresponding parameter will be inserted into the appropriate property vector. If you
omit Row height, it will be assigned a default value; new values for the other prop-
erties default to 0.

Undo flag (default 1) specifies whether or not the addition of the new row may sub-
sequently be undone by an Undo event.

To insert a new row before the first one, you must specify the Row numberas 1 (or 0 if
⎕IO is 0). To add a new row after the last one, you may specify any number greater
than the current number of rows. The data in the new row will be set to 0 if the
Values property is numeric, or to an empty character vector otherwise.

Align Property
Applies To: Animation, Button, ButtonEdit, CoolBar, DateTimePicker,

ListView, Menu, MenuItem, Scroll, Spinner, Splitter, StatusBar,
StatusField, TabBar, TabBtn, TabControl, ToolBar, ToolControl

Description

For an Animation, the Align property may be 'None' or 'Centre' ('Center').
If Align is 'None', the Animation window is automatically resized to fit the AVI
being played. If Align is 'Centre', the AVI is centred in the Animation window. If
the window is too small, the AVI is clipped.

For a Button, Menu, or MenuItem the Align property may be 'None', 'Left' or
'Right'. If the Button Style is 'Radio' or 'Check' this property specifies the
position of the text relative to the button symbol. The default is 'Right'. For a But-
ton with Style 'Push', the value of Align is 'None'.

For a Button with Style 'Radio' or 'Check' that is created as a child of a Grid the
value of the Align property may also be 'Centre' or 'Center'. Either of
these values causes the symbol part of the Button (the circle or checkbox) to be cen-
tred within the corresponding Grid cell(s).

For a DateTimePicker, the Align property specifies the horizontal alignment of the
drop-down Calendar which may be 'Left' (the default) or 'Right'. This applies
only if the Style of the DateTimePicker is 'Combo'.

Chapter 2: A-Z Reference 50

For a Menu , MenuItem, or StatusField, Align 'Right' is used to position the
object at the right end of its parent MenuBar or StatusBar. 'None' is equivalent to
'Left' which is the default.

For objects of type CoolBar, Splitter, Scroll, StatusBar, TabBar, ToolBar and Tool-
Control, Align may be 'None', 'Top', 'Bottom', 'Left' or 'Right'. It spec-
ifies to which (if any) of the four sides of the parent the object is anchored and also
the default position and size of the object. Specifying Align typically causes the
Attach property to be set to appropriate values as follows :

Align Attach

'Top' 'Top' 'Left' 'Top' 'Right'

'Bottom' 'Bottom' 'Left' 'Bottom' 'Right'

'Left' 'Top' 'Left' 'Bottom' 'Left'

'Right' 'Top' 'Right' 'Bottom' 'Right'

These settings cause the object to remain at a fixed distance (in pixels) from the cor-
responding edge of the parent. Furthermore, the object will have a fixed height or
width, but its length will stretch and shrink as the Form is resized.

Note that this does not apply to a TabControl for which the default value of Attach is
'None' 'None' 'None' 'None', regardless of the value of Align.

The default value of Align is 'Right' for a vertical Scroll, 'Bottom' for a hor-
izontal Scroll, and 'Top' for a CoolBar, TabBar, TabControl, ToolBar and Tool-
Control. Furthermore, unless Posn and Size are specified explicitly, the object is
placed along the corresponding edge of its parent.

For a Scroll object, Align also determines the direction of a Scroll object unless it is
overridden by setting Hscroll or Vscroll directly. If neither Hscroll or VScroll is
defined and Align is 'Top' or 'Bottom', a horizontal scrollbar is provided. If
neither Hscroll or Vscroll is defined and Align is 'None', 'Left' or 'Right', a
vertical scrollbar is provided.

Note
The value of the Align property may only be assigned by ⎕WC and may not be
changed using ⎕WS.

Chapter 2: A-Z Reference 51

AlignChar Property
Applies To: Grid

Description

The AlignChar property specifies a character on which the data displayed in a col-
umn of a Grid is to be aligned vertically. It is useful to align columns of numbers that
are formatted by the FormatString property. AlignChar may be a scalar or singleton
that applies to all columns of the Grid, or a vector with one element per column.

If the data in the column is left-justified, it is aligned using the first occurrence of the
alignment character in each cell counting from the left. If the data is right-justified, it
is aligned using the first occurrence of the alignment character from the right-hand
end of the text.

If the text in a cell does not contain an alignment character, it is aligned as if the
alignment character were placed following the last digit.

AlphaBlend Property
Applies To: Form

Description

The AlphaBlend property specifies a level of translucency which allows the area
behind a Form to show through.

AlphaBlend is a scalar integer value in the range 0 to 255.

A value of 255 (the default) specifies no translucency, and the Form is entirely
opaque obliterating anything behind it.

A value of 0 specifies total translucency and the Form itself is not visible. Fur-
thermore, mouse events over the Form will not be reported by the Form itself but will
be passed to any other windows underneath the Form.

Values in between specify varying levels of translucency.

Chapter 2: A-Z Reference 52

AlwaysShowBorder Property
Applies To: Grid

Description

The AlwaysShowBorder property specifies whether or not the border around the cur-
rent cell in a Grid is displayed when the Grid loses the focus.

It is a Boolean value with a default value of 1.

AlwaysShowSelection Property
Applies To: Grid, ListView, TreeView

Description

The AlwaysShowSelection property specifies whether or not the selection remains
highlighted when the object loses the focus.

It is a Boolean value with a default value of 1.

If AlwaysShowSelection is 1, the highlight is dimmed. If AlwaysShowSelection is 0,
the highlight disappears.

Chapter 2: A-Z Reference 53

AmbientChanged Event 533
Applies To: ActiveXContainer, ActiveXControl

Description

If enabled, this event is reported when any of the ambient properties change in an
application hosting an ActiveXControl object. The new values of the ambient prop-
erties are available from the FontObj, Fcol and Bcol properties of the Activ-
eXContainer.

This event is reported for information alone. You may not disable or nullify the event
by setting the action code for the event to ¯1 or by returning 0 from a callback func-
tion.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 4-element vector as follows :

[1] Object ref or character vector

[2] Event 'AmbientChanged' or 533

[3] Property code integer

[4] Description character vector

For properties supported by Dyalog APL, Property code and Description may be one
of the following:

Note that other ambient properties may be reported, although these have no cor-
responding Dyalog APL property.

Chapter 2: A-Z Reference 54

Animate Method 29
Applies To: ActiveXControl, Animation, Button, ButtonEdit, Calendar,

ColorButton, Combo, ComboEx, CoolBar, DateTimePicker, Edit,
Form, Grid, Group, Label, List, ListView, MDIClient, ProgressBar,
PropertyPage, RichEdit, Scroll, SM, Spinner, Static, StatusBar,
SubForm, TabBar, TabControl, ToolBar, ToolControl, TrackBar,
TreeView, UpDown

Description

The Animate method enables you to produce special effects when showing or hiding
objects. There are three types of animation: roll, slide, and alpha-blended fade.

The argument to Animate is a 1 or 2-element array as follows:

[1] Effects integer

[2] Play time integer

Chapter 2: A-Z Reference 55

The value of the Effects parameter is the sum of the following flags:

Flag Value Description

AW_HOR_POSITIVE 1

Animates the window from left to right.
This flag can be used with roll or slide
animation. It is ignored when used with
the AW_CENTER flag.

AW_HOR_NEGATIVE 2

Animates the window from right to left.
This flag can be used with roll or slide
animation. It is ignored when used with
the AW_CENTER flag.

AW_VER_POSITIVE 4

Animates the window from top to
bottom. This flag can be used with roll
or slide animation. It is ignored when
used with the AW_CENTER flag.

AW_VER_NEGATIVE 8

Animates the window from bottom to
top. This flag can be used with roll or
slide animation. It is ignored when used
with the AW_CENTER flag.

AW_CENTER 16
Makes the window appear to collapse
inward if being hidden or expand
outward if being displayed

AW_SLIDE 262144

Uses slide animation. By default, roll
animation is used. This flag is
meaningless on its own but is ignored
when used with the AW_CENTER flag.

AW_BLEND 524288 Uses a fade effect. This flag can be used
only for a Form.

The Playtime parameter is optional and specifies the length of time over which the
animation is played in milliseconds. The default value depends upon the animation
but is typically 200 milliseconds.

Chapter 2: A-Z Reference 56

Animation Object
Purpose: The Animation object displays simple animations from basic .AVI

files or resources.

Parents ActiveXControl, Form, Group, PropertyPage, SubForm

Children Bitmap, Circle, Cursor, Ellipse, Font, Marker, Poly, Rect, Text,
Timer

Properties Type, Posn, Size, File, Coord, Border, Active, Visible, Event,
Sizeable, Dragable, BCol, AutoConf, Data, Attach, EdgeStyle,
Handle, Hint, HintObj, Tip, TipObj, Translate, AcceptFiles,
KeepOnClose, AutoPlay, Transparent, Align, MethodList,
ChildList, EventList, PropList

Methods Detach, GetTextSize, Animate, GetFocus, ShowSIP, AnimOpen,
AnimClose, AnimPlay, AnimStop

Events Close, Create, DragDrop, Configure, ContextMenu, DropFiles,
DropObjects, Expose, Help, KeyPress, GotFocus, LostFocus,
MouseDown, MouseUp, MouseMove, MouseDblClick,
MouseEnter, MouseLeave, MouseWheel, AnimStarted,
AnimStopped

Description

The Animation object displays simple animations from basic .AVI files or resources.

The Animation object can only play AVI files or resources that have no sound and
can only display uncompressed AVI files or .AVI files that have been compressed
using Run-Length Encoding (RLE).

For more sophisticated animations, you may use the Windows Media Player (OCX).

To display an AVI file, you must first use the AnimOpen method to open it. If the
AutoPlay property is set to 1, the animation will play immediately. Otherwise, only
the first frame will be displayed.

The Align property may be 'None' or 'Centre' ('Center'). If Align is
'None', the Animation window is automatically resized to fit the AVI being
played. If Align is 'Centre', the AVI is centred in the Animation window. If the
window is too small, the AVI is clipped.

Chapter 2: A-Z Reference 57

The AnimPlay method may be used to play the animation and allows you to specify
the start, number of frames, and repeat count.

The AnimStop method causes the animation to stop.

The AnimClose method closes the current AVI file and resets the contents of the
object's window to its background colour.

The AnimStarted and AnimStopped events are reported when the animation starts
and stops respectively.

AnimClose Method 291
Applies To: Animation

Description

The AnimClose method closes the AVI file that is currently loaded in an Animation
object. The display is reset to the object's background colour.

The AnimClose method is niladic.

AnimOpen Method 290
Applies To: Animation

Description

The AnimOpen method opens an AVI file in an Animation object.

The argument to AnimOpen is a 1 or 2-element array as follows:

[1] File character vector

[2] Resource id integer

If a single element is specified, it represents the name of a .AVI file.

If 2 elements are specified, the first element specifies the name of a DLL or EXE and
the second element identifies the particular AVI resource stored in that file. The iden-
tifier may be its name (a character string) or its resource id (a non-zero positive
integer).

Chapter 2: A-Z Reference 58

If the AutoPlay property is set to 1, the animation will play immediately. Otherwise,
only the first frame will be displayed.

Note that the Animation object can only play AVI files or resources that have no
sound and can only display uncompressed AVI files or .AVI files that have been com-
pressed using Run-Length Encoding (RLE). If you attempt to open an inappropriate
AVI file, the operation will fail with a DOMAIN ERROR and the following message
will be displayed in the Status Window:

AVI file includes sound data or is in a format not supported by the Animation object

AnimPlay Method 292
Applies To: Animation

Description

The AnimPlay method plays an AVI clip in an Animation object.

The argument to AnimPlay is a 3-element array as follows:

[1] Repeat integer

[2] From integer

[3] To integer

Repeat specifies the number of times the clip is repeated. A value of -1 causes the clip
to be repeated indefinitely.

From is a 0-based index of the frame where playing begins and must be less than
65536. A value of zero means begin with the first frame in the AVI clip

To is a 0-based index of the frame where playing ends and must be less than 65536. A
value of -1 means end with the last frame in the AVI clip

The last frame remains displayed until the clip is unloaded using AnimClose or until
another clip is loaded.

Chapter 2: A-Z Reference 59

AnimStarted Event 294
Applies To: Animation

Description

If enabled, this event is reported by an Animation object just before an AVI clip
starts playing

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 2-element vector as follows :

[1] Object ref or character vector

[2] Event 'AnimStarted' or 294

This event is reported for information only and cannot be disabled or modified in any
way.

AnimStop Method 293
Applies To: Animation

Description

The AnimStop method stops playing an AVI clip in an Animation object.

AnimStop is niladic.

The last frame remains displayed until the clip is unloaded using AnimClose or until
another clip is loaded.

Chapter 2: A-Z Reference 60

AnimStopped Event 295
Applies To: Animation

Description

If enabled, this event is reported by an Animation object just after an AVI clip has
stopped playing

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 2-element vector as follows :

[1] Object ref or character vector

[2] Event 'AnimStopped' or 295

This event is reported for information only and cannot be disabled or modified in any
way.

Chapter 2: A-Z Reference 61

APLVersion Property
Applies To: Root

Description

This is a read-only property that provides information about the Version of Dyalog
APL that you are using. It is a 4-element vector of character vectors as described in
the table below.

Note: In future releases these values may change, be removed, or new ones added.

Index Description Possible Values

[1] Target Environment

Windows
Windows-64
Windows Mobile
Linux
Linux-64
AIX
AIX-64
Solaris
Solaris-64

[2] Version Number

[3] Version Type

W Windows
S Server (terminal) version
M Motif
P PocketAPL

[4] Program Type

Development
Runtime
DLL
DLLRT

Example
]display '.'⎕WG 'APLVersion'

┌→───┐
│ ┌→──────┐ ┌→───────────┐ ┌→┐ ┌→──────────┐ │
│ │Windows│ │13.2.15457.0│ │W│ │Development│ │
│ └───────┘ └────────────┘ └─┘ └───────────┘ │
└∊───┘

Chapter 2: A-Z Reference 62

ArcMode Property
Applies To: Circle, Ellipse

Description

This property determines how arcs are drawn. Its value is 0, 1 or 2.

0 only the arc is drawn

1 arcs define "arc segments", with a single straight line joining the two ends
of the arc together

2 arcs define "pie segments", with lines drawn from the start and end points
of the arc to the centre

Note that the segments defined by ArcMode 1 and 2 may be filled (by setting
FStyle).

Array Property
Applies To: Clipboard

Description

This property may be used to set or retrieve the contents of the Windows clipboard as
a Dyalog APL array.

Chapter 2: A-Z Reference 63

Attach Property
Applies To: Animation, Button, ButtonEdit, Calendar, ColorButton, Combo,

ComboEx, CoolBar, DateTimePicker, Edit, Grid, Group, Label,
List, ListView, MDIClient, ProgressBar, RichEdit, Scroll, SM,
Spinner, Static, StatusBar, StatusField, SubForm, TabBar, TabBtn,
TabControl, ToolBar, ToolControl, TrackBar, TreeView, UpDown

Description

This property specifies how an object responds to its parent being resized. It is a 4-ele-
ment vector of character vectors which defines how each of the four edges of the
object moves in response to a resize request made by the parent. Note that this prop-
erty is only effective if the value of AutoConf on the parent is 2 or 3 and AutoConf
for the object itself is 1 or 3.

The 4 elements of Attach refer to the Top, Left, Bottom and Right edges of the object
respectively. Their values may be defined as follows :

Element Value Meaning

[1] 'Top' top edge of object attached to top edge of parent.

'Bottom' top edge of object attached to bottom edge of parent.

'None' top edge of object is not attached to its parent

[2] 'Left' left edge of object is attached to left edge of parent

'Right' left edge of object is attached to right edge of parent

'None' left edge of object is not attached to its parent

[3] 'Top'
bottom edge of object is attached to top edge of
parent.

'Bottom'
bottom edge of object is attached to bottom edge of
parent.

'None' bottom edge of object is not attached to its parent

[4] 'Left' right edge of object is attached to left edge of parent

'Right'
right edge of object is attached to right edge of its
parent

'None' right edge of object is not attached to its parent

Chapter 2: A-Z Reference 64

If an edge of the object is attached to an edge of its parent, its position in absolute
(pixel) terms remains fixed relative to that edge when its parent is resized. Thus if
Coord is 'Pixel', the corresponding Posn or Size property of the object remains
unaffected by the resize. If Coord has any other value, the value of Posn or Size will
change.

If an edge of the object is not attached to its parent, its absolute position (in pixels)
will change in proportion to the size change (in the corresponding direction) of its
parent. Thus if Coord is 'Pixel',the corresponding Posn or Size property of the
object will change as a result of the resize. If Coord has any other value, the value of
Posn or Size will be unaffected.

The default value of Attach is ('None' 'None' 'None' 'None'). This causes
the object to reposition and resize itself in proportion to its parent.

Some objects have an Align property which, among other things, provides a quick
way to set their Attach property. Examining this mechanismmay help to further
explain how the Attach property works. Setting Align to 'Top' has the effect of set-
ting Attach to ('Top' 'Left' 'Top' 'Right'). Attaching the top edge of
the object to the top edge of its parent causes the object to remain at a fixed distance
from the top edge of its parent. The additonal measure of attaching its bottom edge to
the top edge of its parent causes the height of the object to remain fixed. Attaching
the left and right edges of the object to the corresponding edges of its parent causes
the object to shrink and expand as the parent is resized horizontally. If you position
the object at (0 0) and set its width to be the same as the width of its parent, you have
an object that always occupies the entire length of its parent, yet remains of fixed
height. This is precisely the behaviour required for a ToolBar or a top Scroll Bar. For
further details, see Align property.

AutoArrange Property
Applies To: ListView

Description

The AutoArrange property is Boolean and specifies whether or not the items in a List-
View object are automatically re-arranged when a single item is repositioned. Its
default value is 0.

Chapter 2: A-Z Reference 65

AutoBrowse Property
Applies To: OLEClient

Description

This property is retained for backwards compatibility with previous versions of Dya-
log APL, but is no longer relevant. Setting it has no effect.

AutoConf Property
Applies To: ActiveXControl, Animation, Button, ButtonEdit, Calendar, Circle,

ColorButton, Combo, ComboEx, DateTimePicker, Edit, Ellipse,
Form, Grid, Group, Image, Label, List, ListView, Marker, Poly,
ProgressBar, Rect, RichEdit, Scroll, SM, Spinner, Static, StatusBar,
StatusField, SubForm, TabBar, TabBtn, Text, ToolBar, TrackBar,
TreeView, UpDown

Description

This property determines what happens to an object when its parent is resized, and
how resizing an object affects its children. It may take one of the following values;
the default is 3.

0 Ignore resize by parent.Do not propagate resize to children.

1 Accept resize by parent.Do not propagate resize to children.

2 Ignore resize by parent.Do propagate resize to children.

3 Accept resize by parent.Do propagate resize to children.

If AutoConf is 0 or 2, the object's physical size (in pixels) and position (in pixels) rel-
ative to the top left corner of its parent remains unchanged when its parent is resized.
If the object has 'Prop' or 'User' co-ordinates, the values of its Posn and Size
properties will change as a result.

If AutoConf is 1 or 3, by default, the object is physically reconfigured when its par-
ent is resized such that its relative size and position within its parent remain
unchanged. If the object has 'Pixel' co-ordinates, the values of its Posn and Size
properties will change as a result. Note that this default processing can be prevented
by inhibiting the Configure (31) Event.

Chapter 2: A-Z Reference 66

If AutoConf is 0 or 1 and the object is resized, either by its parent or directly by the
user, it does not attempt to physically reconfigure its children. This means that if the
children have 'Prop' or 'User' co-ordinates, the values of their Posn and Size co-
ordinates will change as a result.

If AutoConf is 2 or 3 and the object is resized, either by its parent or directly by the
user, it propagates a Configure (31) Event to each of its children. By default this
means that the object's children will be physically reconfigured so that they maintain
their relative positions and sizes within it. If their co-ordinate system is 'Pixel',
the values of their Posn and Size properties will change as a result.

Note
Additional or alternative control may be imposed by inhibiting the Configure (31)
Event. This can be done either by setting the event's "action" code to ¯1 or by return-
ing a 0 from a callback function attached to it.

AutoExpand Property
Applies To: Grid

Description

This property is a 2-element boolean value that specifies whether or not rows and col-
umns may be added to a Grid object by the user.

If the first element of AutoExpand is 1, a row is added when the current cell is within
the last row of the Grid and the user presses Cursor Down

Similarly, if the second element is 1, a column is added when the current cell is
within the last column of the Grid and the user presses Cursor Right.

Note that when a row or column is added, the appropriate properties (including
Values and CellTypes)are expanded accordingly.

The default value for AutoExpand is (0 0).

If AutoExpand is enabled, the Grid generates AddRow and AddCol events. You can
return a zero from a callback function to selectively prevent the addition of rows and
columns if appropriate.

Chapter 2: A-Z Reference 67

AutoPlay Property
Applies To: Animation

Description

Specifies whether or not an AVI clip is played immediately when loaded in an
Animation object.

AutoPlay is a single number with the value 0 (the default) or 1. If AutoPlay is 1, the
AVI clip is automatically played through once from beginning to end when loaded
from a file by the AnimOpen method.

BadValue Event 180
Applies To: ButtonEdit, Edit, Spinner

Description

If enabled, this event is reported by an Edit or Spinner object when the user enters
invalid data into the object and then switches focus to another control or to another
application. Data is invalid if it conflicts with the FieldType property, or for a
Spinner if it is outside the range specified by the Limits property.

The default action of the event is to sound the bell (beep). You can disable this
action by returning 0 from a callback function or by setting its action code to ¯1.
Note that in neither case is the Value property of the object updated. The event mes-
sage reported as the result of ⎕DQ, or supplied as the right argument to your callback
function, is a 3-element vector as follows :

[1] Object ref or character vector

[2] Event 'BadValue' or 180

[3] Object name character vector

The third element of the event message is either the name of the control to which the
user has switched the focus, or is an empty vector if the focus has gone to another
application.

Chapter 2: A-Z Reference 68

BalloonHide Event 862
Applies To: SysTrayItem

Description

If enabled, this event is reported by an SysTrayItem object when a BalloonTip dis-
appears for any reason other than it is dismissed by a timeout or because the user
clicked the mouse.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 2-element vector as follows :

[1] Object ref or character vector

[2] Event 'BalloonHide' or 862

This event is reported for information only and cannot be disabled or modified in any
way

BalloonShow Event 861
Applies To: SysTrayItem

Description

If enabled, this event is reported by an SysTrayItem object when a BalloonTip is dis-
played using the ShowBalloonTip method.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 2-element vector as follows :

[1] Object ref or character vector

[2] Event 'BalloonShow' or 861

This event is reported for information only and cannot be disabled or modified in any
way

Chapter 2: A-Z Reference 69

BalloonTimeout Event 863
Applies To: SysTrayItem

Description

If enabled, this event is reported by an SysTrayItem object when a BalloonTip is dis-
missed by a timeout or because the user clicked the close (X) button..

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 2-element vector as follows :

[1] Object ref or character vector

[2] Event 'BalloonTimeout' or 863

This event is reported for information only and cannot be disabled or modified in any
way

BalloonUserClick Event 864
Applies To: SysTrayItem

Description

If enabled, this event is reported by an SysTrayItem object when a BalloonTip is dis-
missed because the user clicked the mouse in the body of the BalloonTip. It is not
reported when the user clicks the close (X) button.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 2-element vector as follows :

[1] Object ref or character vector

[2] Event 'BalloonUserClick' or 864

This event is reported for information only and cannot be disabled or modified in any
way

Chapter 2: A-Z Reference 70

BandBorders Property
Applies To: CoolBar

Description

The BandBorders property specifies whether or not narrow lines are drawn to sep-
arate adjacent bands in a CoolBar.

BandBorders is a single number with the value 0 (no lines) or 1 (lines are displayed);
the default is 0.

The effect of BandBorders is illustrated below.

Chapter 2: A-Z Reference 71

BaseClass Property
Applies To: NetType

Description

This property specifies the name of the .Net class upon which the NetType is based.
The newly created NetType inherits the properties, methods and events of this class.

BCol Property
Applies To: ActiveXContainer, ActiveXControl, Animation, Button,

ButtonEdit, Circle, Combo, ComboEx, CoolBand, CoolBar, Edit,
Ellipse, Form, Grid, Group, Label, List, ListView, MDIClient,
Menu, MenuItem, Poly, ProgressBar, Rect, RichEdit, Scroll,
Separator, SM, Spinner, Splitter, Static, StatusBar, StatusField,
SubForm, TabBar, TabBtn, Text, TipField, ToolBar, TrackBar,
TreeView, UpDown

Description

This property defines the background colour(s) of an object. For objects with more
than one constituent part, it may specify a set of background colours, one for each
part. A single colour is represented by a single number which refers to a standard
colour, or by a 3-element vector which defines a colour explicitly in terms of its red,
green and blue intensities.

If BCol is 0 (which is the default) the background colour is defined by your current
colour scheme for the object in question. For example, if you select yellow as your
MS-Windows "Menu Bar" colour, you will by default get a yellow background in
Menu and MenuItem objects, simply by not specifying BCol or by setting it to 0.

Chapter 2: A-Z Reference 72

A negative value of BCol refers to a standard MS-Windows colour as described
below. Positive values are reserved for a possible future extension.

BCol Colour Element BCol Colour Element

0 Default ¯11 Active Border

¯1 Scroll Bars ¯12 Inactive Border

¯2 Desktop ¯13 Application Workspace

¯3 Active Title Bar ¯14 Highlight

¯4 Inactive Title Bar ¯15 Highlighted Text

¯5 Menu Bar ¯16 Button Face

¯6 Window Background ¯17 Button Shadow

¯7 Window Frame ¯18 Disabled Text

¯8 Menu Text ¯19 Button Text

¯9 Window Text ¯20 Inactive Title Bar Text

¯10 Active Title Bar Text ¯21 Button Highlight

If BCol is set to ⍬ (zilde), the object is drawn with a transparent background.

If BCol contains a 3-element vector, it specifies the intensity of the red, green and
blue components of the colour as values in the range 0-255. For example, (255 0 0) is
red and (255 255 0) is yellow.

Note that the colour realised depends upon the capabilities of the display adapter and
driver, and the current Windows colour map.

For a Button, BCol is only effective if the Style is 'Radio'or 'Check' and is
ignored if the Style is 'Push'.

It is recommended that you only use pure background colours in Combo and Edit
objects. This is because the text written in these objects cannot itself have a dithered
background.

For the Ellipse, Poly and Rect objects, BCol specifies the background colour of the
line drawn around the perimeter of the object and is effective only when a non-solid
line (LStyle 1-4) is used. It also specifies the colour used to fill the spaces between
hatch lines if a hatch fill (FStyle 1-6) is used.

Chapter 2: A-Z Reference 73

BeginEditLabel Event 300
Applies To: ListView, TreeView

Description

If enabled, this event is reported when the user clicks on an item in a ListView or
TreeView object that has the focus, and signals the start of an edit operation. The
default processing for the event is to display a pop-up edit box around the item and
to permit the user to change its text.

You may disable the operation by setting the action code for the event to ¯1. You
may prevent a particular item from being edited by returning 0 from a callback func-
tion. You may also initiate the edit operation by calling BeginEditLabel as a method.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 3-element vector as follows :

[1] Object ref or character vector

[2] Event 'BeginEditLabel' or 300

[3] Item number Integer. The index of the item.

Chapter 2: A-Z Reference 74

Bitmap Object
Purpose: A graphical object used to represent a bitmap which may be used

both to display a picture or as a pattern (brush) used to fill other
objects.

Parents ActiveXControl, Animation, Button, CoolBand, Form, Grid,
Group, ImageList, ListView, Menu, MenuBar, MenuItem, NetType,
OLEServer, Printer, ProgressBar, PropertyPage, PropertySheet,
RichEdit, Root, StatusBar, SubForm, TCPSocket, ToolBar,
ToolButton, ToolControl, TrackBar, TreeView, UpDown

Children Circle, Ellipse, Font, Image, Marker, Metafile, Poly, Rect, Text,
Timer

Properties Type, File, Bits, CMap, KeepBits, Size, Coord, Event, FontObj,
YRange, XRange, Data, TextSize, Translate, Accelerator,
KeepOnClose, CBits, MaskCol, MethodList, ChildList, EventList,
PropList

Methods Detach, FileRead, FileWrite, MakePNG, MakeGIF, GetTextSize

Events Close, Create, Select

Description

A Bitmap may be created either from a file (.BMP, .GIF or .PNG),) or from APL
arrays. To create a Bitmap object using ⎕WC, you can either specify the File property
or the Cbits property, or the Bits and CMap properties.

If you specify File, it should contain the name of a bitmap file from which the bitmap
is to be read. If omitted, a .BMP file extension is added. You may also load a Bitmap
from a DLL or from the DYALOG.EXE executable. See File property for details.

If instead you want to create a Bitmap dynamically fromAPL variables, you may do
so in one of two ways.

For a palette of up to 256 colours, you may specify the image using the Bits and
CMap properties. The alternative is to use the Cbits property which works for any
size of colour palette.

If MaskCol is non-zero, it specifies the transparent colour for the Bitmap. Any pixels
specified with the same colour will instead be displayed in whatever colour is under-
neath the Bitmap. This achieves similar behaviour to that of an Icon.

Chapter 2: A-Z Reference 75

The KeepBits property has the value 0 or 1, and controls how a Bitmap is saved in
the workspace. A value of 0 (the default) means that the values of Cbits, Bits and
CMap are not kept in the workspace. If you request the values of Cbits, Bits or CMap
with ⎕WG, they are obtained directly from the corresponding Windows bitmap
resource. When the workspace is)LOADed, the Bitmap is recreated from the asso-
ciated file defined by the value of the File property. Note that if this file doesn't exist
when the workspace is)LOADed, the Bitmap is not created, but no error is generated.
However, when you reference the object you will get a VALUE ERROR.

If KeepBits is 1, the values of Cbits, Bits and CMap are stored permanently in the
workspace, and are used to rebuild the Bitmap when the workspace is)LOADed. In
this case, the file name (if any) is ignored. Setting KeepBits to 1 uses more work-
space, but may be more convenient if you want to distribute applications.

The Size property allows you to query the size of a Bitmap without having to retrieve
the Cbits or Bits property and then take its "shape". This will be noticeably faster for
a large Bitmap. If you set the Size property using ⎕WS the Bitmap is scaled to the new
size.

A useful feature of a Bitmap is that it can be the parent of any of the graphical
objects. This allows you to create or edit a bitmap by drawing lines, circles, etc. in it.

The FileRead (90) and FileWrite (91) methods allow you to dynamically manage bit-
map files (.BMP). The expression :

bmname.FileWrite

causes the Bitmap called bmname to be written to the file specified by the current
value of the File property. The file is automatically written in standard bitmap format.
Similarly, the expression :

bmname.FileRead

causes the Bitmap called bmname to be redefined from the bitmap file specified by
the current value of the File property.

The MakeGIF and MakePNG methods may be used to convert the image represented
by a Bitmap object into a GIF or PNG data stream, suitable for display in a web
browser. The TCPSendPicture method may be used to transfer a Bitmap on a TCP/IP
socket.

Using a bitmap is always a 2-stage process. First you create a Bitmap object with
⎕WC. Then you use it by specifying its name as a property of another object.

Chapter 2: A-Z Reference 76

The Picture property specifies the name of a Bitmap to be displayed in an Activ-
eXControl, Button, Form, Group, Image, MDIClient, Sm, Static, StatusBar, Stat-
usField, SubForm, TabBar, or ToolBar.

The BtnPix property specifies three Bitmaps to be used to represent the 3 states of a
Button, Menu orMenuItem.

The FStyle property specifies the name of a Bitmap to be used as a pattern to fill a
Poly, Ellipse or Rect object.

Bits Property
Applies To: Bitmap, Clipboard, Cursor, Icon

Description

This property defines the pattern in a Bitmap, Cursor, or Icon object, or the pattern of
a bitmap stored in the Windows clipboard.

For a Bitmap, Clipboard or Icon, Bits is an integer matrix each of whose elements rep-
resents the colour of the corresponding pixel in the bitmap. The colours are specified
as 0-origin indices into the CMap property, which itself defines the complete set of
different colours (the colour map) used by the object.

Please note that Bits and CMap may only be used to represent an image with a colour
palette of 256 colours or less. If the colour palette is larger, the values of Bits and
CMap reported by ⎕WG will be (0 0). For a high-colour image, use Cbits instead.

For a Cursor, Bits is a boolean matrix which specifies the shape of the cursor. For a
Cursor and Icon, Bits is used in conjunction with the Mask property.

See CMap for further details.

Chapter 2: A-Z Reference 77

Border Property
Applies To: ActiveXControl, Animation, Button, ButtonEdit, Calendar, Combo,

ComboEx, DateTimePicker, Edit, Form, Grid, Group, Label, List,
ListView, MDIClient, RichEdit, Scroll, SM, Spinner, Static,
StatusBar, StatusField, SubForm, TabBtn, ToolBar, TrackBar,
TreeView, UpDown

Description

This property specifies whether or not an object is displayed with a border around it.
It is a single number with the value 0 (no border)1 (Border), or 2. The value 2 applies
only to a Form and is used in combination with ('EdgeStyle' 'Dialog') to
obtain standard dialog box appearance

For a Form or SubForm, the value of the Border property is only relevant if Sizeable,
Moveable, SysMenu, MaxButton and MinButton are all 0.

Note
The value of the Border property may only be assigned by ⎕WC and may not be
changed using ⎕WS.

Browse Method 585
Applies To: OCXClass, OLEClient

Description

The Browse method is retained for compatibility with previous versions of Dyalog
APL, but is no longer relevant and has no effect.

Chapter 2: A-Z Reference 78

BrowseBox Object
Purpose: The BrowseBox object allows the user to browse for and select a

folder or other resource.

Parents ActiveXControl, CoolBand, Form, Grid, OLEServer, PropertyPage,
PropertySheet, Root, StatusBar, SubForm, TCPSocket, ToolBar,
ToolControl

Children Timer

Properties Type, Caption, BrowseFor, Target, StartIn, HasEdit, Event, Data,
Translate, KeepOnClose, MethodList, ChildList, EventList,
PropList

Methods Detach, Wait

Events Close, Create, FileBoxOK, FileBoxCancel

Description

For full functionality as described here, the BrowseBox object requires the Win-
dows Shell Library SHELL32.DLL Version 4.71 or higher. The BrowseBox
object also supports the enhanced functionality provided by SHELL32.DLL Ver-
sion 5 (Windows 2000) if present.

The BrowseBox object is a dialog box that allows the user to browse for and select a
folder (directory) or other resource.

The BrowseFor property specifies the type of resource and may be 'Directory'
(the default), 'File', 'Computer'or 'Printer'.

The StartIn property specifies the path name where browsing should start.

The HasEdit property specifies whether or not the dialog box contains an edit field
into which the user can type the name of the folder or other resource, rather than
browsing for it. The default is 0.

A BrowseBox may only be used by the execution of a modal ⎕DQ. The action code
for the FileBoxOK and FileBoxCancel events must be set to 1 so that the appropriate
result is returned by the modal ⎕DQ.

After the user has pressed OK or Cancel, the Target property contains the name of the
chosen folder or other resource.

Chapter 2: A-Z Reference 79

Example:
∇ DIR←{START_DIR}GetDir CAPTION;BB;MSG

[1] ⍝ Ask user for a Directory name
[2] ⍝ CAPTION specifies Caption for dialog box
[3] ⍝ START_IN (optional) specifies starting directory
[4] ⍝ DIR is empty if user cancels
[5] :With 'BB'⎕WC'BrowseBox'
[6] :If 2=⎕NC'START_DIR'
[7] StartIn←START_DIR
[8] :Else
[9] StartIn←''
[10] :EndIf
[11] onFileBoxOK←onFileBoxCancel←1
[12] Caption←CAPTION
[13] HasEdit←1
[14] MSG←⎕DQ''
[15] :If 'FileBoxOK'≡2⊃MSG
[16] DIR←Target ⍝ = 3⊃MSG
[17] :Else
[18] DIR←''
[19] :EndIf
[20] :EndWith

∇

BrowseFor Property
Applies To: BrowseBox

Description

The BrowseFor property is a character vector that specifies the type of resource to be
the target of a object.

BrowseFor may be 'Directory' (the default), 'File', 'Computer' or
'Printer'.

Chapter 2: A-Z Reference 80

BtnPix Property
Applies To: Button, Menu, MenuItem

Description

This property is used to customise the appearance of a Button, Menu orMenuItem. It
specifies the names of or refs to up to 3 Bitmap objects to be used to display the
object under different circumstances. In general, BtnPix is a 3-element vector of char-
acter vectors or refs. However, if it defines a single Bitmap, it may be a single ref, a
simple character scalar or vector, or an enclosed character vector.

The first Bitmap is displayed when the object is shown in its normal state. For a But-
ton, this is when its State is 0. The second Bitmap is used for a Menu orMenuItem,
when the object is selected (highlighted), or for a Button when its State is 1. The
third Bitmap is used when the object is disabled by having its Active property set to
0.

For a Button with Style'Push', this means that when the user clicks the Button, its
appearance switches from the first to the second Bitmap, and then back again. To
maintain the standard 3-D appearance, the Bitmaps should contain the correct
shadow lines around their edges. For Buttons with Style'Radio' or 'Check', the
Button will display one or other of the two Bitmaps according to its current State.

For example, to have a Button that displays a "Tick" or a "Cross" according to its
State :

'YES' ⎕WC 'Bitmap' 'C:\WDYALOG\YES.BMP'
'NO' ⎕WC 'Bitmap' 'C:\WDYALOG\NO.BMP'
'f1.r1' ⎕WC 'Button'('Style' 'Check')

('BtnPix' 'YES' 'NO')

Chapter 2: A-Z Reference 81

Btns Property
Applies To: MsgBox

Description

The Btns property determines the set of buttons to be displayed in a MsgBox. It is a
simple vector (one button) or a matrix with up to 3 rows, or a vector of up to 3 char-
acter vectors specifying the captions for up to 3 buttons. The buttons are arranged
along the bottom of the dialog box in the order specified.

UnderWindows, there are restrictions on these buttons. However the property has
been designed more generally to be useful under different GUIs and perhaps later
revisions ofWindows.

UnderWindows, the Btns property may specify one of six sets of buttons as follows.

l 'OK'
l 'OK' 'CANCEL'
l 'RETRY' 'CANCEL'
l 'YES' 'NO'
l 'YES' 'NO' 'CANCEL'
l 'ABORT 'RETRY' 'IGNORE'

If any other combination is specified, ⎕WC and ⎕WS will report a DOMAIN ERROR.
The names of the buttons are however case-insensitive, so the system will accept
'ok', 'Ok', 'oK' or 'OK'.

If the Btns property is not specified, it assumes a default according to Style as follows
:

Style Btns

'Msg' or 'Info' 'OK'

'Warn' or 'Error' 'OK' 'CANCEL'

'Query' 'YES' 'NO'

If Style is not specified, Btns defaults to 'OK'.

Chapter 2: A-Z Reference 82

Button Object
Purpose: Allows the user to initiate an action or to select an option using a

button.

Parents ActiveXControl, CoolBand, Form, Grid, Group, PropertyPage,
SubForm, ToolBar, ToolControl

Children Bitmap, Circle, Cursor, Ellipse, Font, Marker, Poly, Rect, Text,
Timer

Properties Type, Caption, Posn, Size, Style, Coord, Align, State, Default,
Cancel, Border, Justify, Active, Visible, Event, Sizeable, Dragable,
FontObj, FCol, BCol, Picture, BtnPix, CursorObj, AutoConf, Data,
Attach, EdgeStyle, Handle, Hint, HintObj, Tip, TipObj, ReadOnly,
Translate, Accelerator, AcceptFiles, KeepOnClose, Redraw,
TabIndex, Elevated, Note, MethodList, ChildList, EventList,
PropList

Methods Detach, GetTextSize, Animate, GetFocus, ShowSIP, ChooseFont

Events Close, Create, DragDrop, Configure, ContextMenu, DropFiles,
DropObjects, Expose, Help, KeyPress, GotFocus, LostFocus,
MouseDown, MouseUp, MouseMove, MouseDblClick,
MouseEnter, MouseLeave, MouseWheel, FontOK, FontCancel,
Select, DropDown

Description

The type of button displayed is determined by the Style property which may take the
value 'Push', 'Radio', 'Check', 'Toggle', 'Split' or 'CommandLink'.
UnderWindows, 'Toggle' and 'Check' are treated identically.

'Split' and 'CommandLink' apply only to Windows Vista and later and
require Native Look and Feel (see page 36). Otherwise the use of these Styles will
produce a Button with Style 'Push'.

Push buttons are used to generate actions. When the user "presses" a pushbutton, it
generates a Select event (30). To cause an action, you simply associate the name of a
callback function with this event for the Button in question.

Chapter 2: A-Z Reference 83

Radio buttons and Check boxes are used to select options. They each have two states
between which the user can toggle by clicking the mouse. When the Button (option)
is selected, its State property has the value 1; otherwise it is 0.

Only one of a group of Radio buttons which share the same parent can be set (State is
1) at any one time. Radio buttons are therefore used for a set of choices that aremutu-
ally exclusive. Check boxes however, may be set together to signify a combination
of options. These are used for making choices which are not mutually exclusive.

Radio and Check buttons also generate Select events when their State changes, and
you can attach callback functions to these events to keep track of their settings. How-
ever, as Radio and Check buttons are not normally used to generate actions, it is per-
haps easier to wait until the user signifies completion of the dialog box in some way,
and then query the State of the buttons using ⎕WG. For example, if you have a set of
Radio or Check buttons in a Group called f1.options, the following statements
retrieve their settings.

OPTIONS ← (⎕WN 'f1.options') ⎕WG¨⊂'State'

or

OPTIONS ← ⎕WG∘'State' ¨ ⎕WN 'f1.options'

The Caption property determines the text displayed in the Button. Its default value is
an empty vector. If Style is 'Radio' or 'Check', the text may be aligned to the
left or right of the button graphic using the Align property. Its default value is
'Right'.

The CommandLink button has an icon displayed to the left of its Caption. The
appearance of the icon is controlled by the Elevated property. Elevation is a feature
ofUser Account Control in Windows 7. In addition to the Caption , additional text
may be defined by its Note property. If provided, this is displayed below the Caption.

The Split Button has a drop-down button, similar to that provided by a Combo
object.

If Posn is omitted, the button is placed in the centre of its parent. If either element of
Posn is set to ⍬, the button is centred along the corresponding axis.

If Size is not specified, the size of the button is determined by its Caption. If either ele-
ment of Size is set to ⍬ the corresponding dimension is determined by the height or
width of its Caption. If Caption is not specified, or is set to an empty vector, the value
of Size is set to a default value.

Button colours can be specified using FCol and BCol. However, pushbuttons
(Style'Push') ignore BCol and instead use the standard Windows colour.

Chapter 2: A-Z Reference 84

The Picture property is used to display a bitmap on a pushbutton. This property is a
2-element array containing the name of a Bitmap object and the "mode" in which it is
to be displayed. The default mode (3) is the most useful, as it causes the Bitmap to be
superimposed on the centre of the Button. The surrounding edges of the Button
(which gives it its 3-dimensional appearance and pushbutton behaviour) are unaf-
fected. Note that if Picture is set on a Button whose Style is 'Radio' or 'Check',
the Button assumes pushbutton appearance, although its'Radio' / 'Check'
behaviour is preserved.

An alternative is to use the BtnPix property. This property specifies the names of up
to 3 Bitmap objects. The first Bitmap is displayed when the State of the Button is 0.
The second is displayed when its State is 1. The third is shown when the Button is
inactive (Active 0). BtnPix is more flexible than Bitmap, but if you want your Button
to exhibit pushbutton behaviour, you must design your bitmap accordingly.

The ReadOnly property is Boolean and specifies whether or not the user may change
the state of the Button. It applies only to Style'Radio' and Style'Check'.

The user can interact with the Button by clicking it, which generates a Select Event
or (Style 'Split') the drop-down.which generates a DropDown Event

Chapter 2: A-Z Reference 85

ButtonEdit Object
Purpose: Allows user to enter or edit data.

Parents ActiveXControl, Form, Group, PropertyPage, SubForm

Children Circle, Ellipse, Font, ImageList, Marker, Poly, Rect, Text, Timer

Properties Type, Text, Posn, Size, Style, Coord, Align, Border, Justify, Active,
Visible, Event, ImageListObj, Sizeable, Dragable, FontObj, FCol,
BCol, CursorObj, AutoConf, Data, Attach, EdgeStyle, Handle,
Hint, HintObj, Tip, TipObj, FieldType, MaxLength, Decimals,
Password, ValidIfEmpty, ReadOnly, FormatString, Changed, Value,
Translate, Accelerator, AcceptFiles, KeepOnClose, Transparent,
ImageIndex, Redraw, TabIndex, Cue, ShowCueWhenFocused,
MethodList, ChildList, EventList, PropList

Methods Detach, ChooseFont, GetTextSize, Animate, GetFocus, ShowSIP

Events Close, Create, FontOK, FontCancel, DragDrop, Configure,
ContextMenu, DropFiles, DropObjects, Expose, Help, KeyPress,
GotFocus, LostFocus, MouseDown, MouseUp, MouseMove,
MouseDblClick, MouseEnter, MouseLeave, MouseWheel, Select,
BadValue, KeyError, Change, DropDown

Description

The ButtonEdit object combines a single-line input field with a customisable button.
It provides the same user and programmer interfaces as an Edit object (Style
'Single').

The appearance of the button, which is displayed to the right of the input field, is
determined by the ImageListObj property. When clicked, the object generates a Drop-
Down event. There is no default processing for this event; it is up to the programmer
to take the appropriate action via a callback function.

Chapter 2: A-Z Reference 86

The following picture illustrates two ButtonEdit objects

∇ Example;BK;White
[1] 'F'⎕WC'Form' 'ButtonEdit'
[2] 'F.IL1'⎕WC'ImageList'('Size' 16 16)('Masked' 1)
[3] 'F.IL1.Time'⎕WC'Icon' 'c:\MadCap13.2\ICO\Time.ico'
[4] 'F.BE1'⎕WC'ButtonEdit' ''(30 20)(⍬ 160)
[5] F.BE1.(Cue ShowCueWhenFocused)←'Enter data' 1
[6] F.BE1.(ImageListObj ImageIndex)←F.IL1 1
[7]
[8] 'F.fnt'⎕WC'Font' 'APL385 Unicode' 16
[9] BK←16 16⍴256⊥White←255 255 255
[10] 'F.Rotate'⎕WC'Bitmap'('CBits'BK)('MaskCol'White)
[11] 'F.Rotate.'⎕WC'Text' '⌽'(0 3)('FontObj'F.fnt)
[12] BK←F.Rotate.CBits
[13] 'F.IL1.'⎕WC'BitMap'('CBits'BK)('MaskCol'White)
[14] 'F.BE2'⎕WC'ButtonEdit' 'Hello World'(100 20)(⍬
160)
[15] F.BE2.(ImageListObj ImageIndex)←F.IL1 2
[16] F.BE2.onDropDown←'Rotate'

∇

∇ Rotate msg
[1] (⊃msg).Text←⌽(⊃msg).Text

∇

Chapter 2: A-Z Reference 87

ButtonsAcceptFocus Property
Applies To: ToolControl

Description

This is a Boolean property that determines how the Tab key and other cursor move-
ment keys are handled by a ToolControl object.

If ButtonsAcceptFocus is 0 (the default), when the user presses Tab or Shift+Tab to
switch the input focus from another object to the ToolControl, the first ToolButton in
the ToolControl receives the input focus and is highlighted. Pressing Tab or
Shift+Tab again causes the input focus to move to another control. The cursor move-
ment keys have no effect.

If ButtonsAcceptFocus is 1, when the user presses Tab or Shift+Tab to switch the
input focus from another object to the ToolControl, the first or last ToolButton in the
ToolControl receives the input focus and is highlighted. Note that the behaviour of
Shift+Tab in this case is different. Pressing Tab or Shift+Tab again causes the input
focus to move to another control, although if there is no other control to accept the
input focus, it moves to the first or last ToolButton as appropriate. Pressing the cursor
movement keys causes the input focus to move from one ToolButton to the next.

Chapter 2: A-Z Reference 88

Calendar Object
Purpose: The Calendar object provides an interface to the Month Calendar

Control

Parents ActiveXControl, Form, Group, PropertyPage, SubForm, ToolBar

Children Cursor, Font, Menu, MsgBox, TCPSocket, Timer

Properties Type, Posn, Size, Style, Coord, Border, Active, Visible, Event,
FirstDay, MaxSelCount, SelDate, MinDate, MaxDate,
CalendarCols, Today, HasToday, CircleToday, WeekNumbers,
MonthDelta, Sizeable, Dragable, FontObj, CursorObj, AutoConf,
Data, Attach, EdgeStyle, Handle, Hint, HintObj, Tip, TipObj,
Accelerator, KeepOnClose, Redraw, TabIndex, MethodList,
ChildList, EventList, PropList

Methods Detach, ChooseFont, GetTextSize, Animate, GetFocus, ShowSIP,
GetVisibleRange, GetMinSize, IDNToDate, DateToIDN

Events Close, Create, FontOK, FontCancel, DragDrop, Configure,
ContextMenu, DropFiles, DropObjects, Expose, Help, KeyPress,
GotFocus, LostFocus, MouseDown, MouseUp, MouseMove,
MouseDblClick, MouseEnter, MouseLeave, MouseWheel,
SelDateChange, GetDayStates, CalendarDown, CalendarUp,
CalendarDblClick, CalendarMove, Select

Description

The Calendar object displays a calendar and allows the user to select a date or range
of dates. The following illustration shows a default Calendar object.

Chapter 2: A-Z Reference 89

The Calendar object will display as many full months as it can fit into the area spec-
ified by its Size property as sown below.The minimum size required to encompass a
single month may be obtained using the GetMinSize method.

'F'⎕WC'Form' 'Example 2'('Size' 50 50)
'F.C'⎕WC'Calendar'('Size' 100 100)

The Today property is an IDN that specifies the current day. Its default value is
today's date, i.e. the local date set on your computer.

Chapter 2: A-Z Reference 90

The CircleToday property is either 0 or 1 (the default) and specifies whether or not
the Today date is circled when the Calendar object is showing the corresponding
month.

The HasToday property is either 0 or 1 (the default) and specifies whether or not the
Today date is displayed (using the Windows short date format) in the bottom left of
the Calendar object.

The WeekNumbers property is either 0 (the default) or 1 and specifies whether or not
the Calendar displays week numbers.

The following example shows a Calendar with both CircleToday and HasToday set
to 0 and WeekNumbers set to 1.

'F'⎕WC'Form' 'Example 3'('Size' 30 30)
'F.C'⎕WC'Calendar'('CircleToday' 0)('HasToday' 0)
('WeekNumbers' 1)

The FirstDay property is an integer whose value is in the range 0-6. FirstDay spec-
ifies the day that is considered to be the first day of the week and which appears first
in the Calendar. The default value for FirstDay depends upon your International Set-
tings.

The MinDate and MaxDate properties are integers that specify the minimum and max-
imum IDN values that the user may display and select in the Calendar object. By
default these properties specify the entire range of dates that the Windows Month Cal-
endar control can provide.

The MonthDelta property specifies the number of months by which the Calendar
object scrolls when the user clicks its scroll buttons. The default is empty (zilde)
which implies the number of months currently shown.

Chapter 2: A-Z Reference 91

The Style property may be either 'Single' (the default) or 'Multi'. If Style is
'Single', the user may select a single date. If Style is 'Multi', the user may select
a contiguous range of dates. In this case, the maximum number of contiguous days
that can be selected is defined by the MaxSelCount property which is an integer
whose default value is 7.

The SelDate property is a 2-element integer vector of IDN values that identifies the
first and last dates that are currently selected.

When the user selects one or more dates, the Calendar object generates a Sel-
DateChange event. This event is also generated when the Calendar object is scrolled,
and the selection changes automatically to another month.

The Calendar displays day numbers using either the normal or the bold font attribute
and you may specify which attribute is to be used for each day shown. However, the
Calendar object does not store this information beyond the month or months cur-
rently displayed.

When the Calendar control scrolls (and potentially at other times), it generates a Get-
DayStates event that, in effect, asks you (the APL program) to tell it which (if any) of
the dates that are about to be shown should be displayed in bold.

If you wish any dates to be displayed using the bold font attribute, you must attach a
callback function to the GetDayStates event which returns this information in its
result. By default, all dates are displayed using the normal font attribute, so you only
need a callback function if you want any dates to be displayed in bold.

You may also set the font attribute for particular days in the range currently dis-
played by calling GetDayStates as a method.

The CalendarCols property specifies the colours used for various elements in the Cal-
endar object.

You may convert dates between IDN and ⎕TS representations using the IDNToDate
and DateToIDN methods. Note that these methods apply to all objects and not just
to the Calendar object itself.

The GetVisibleRange method reports the range of dates that is currently visible in
the Calendar object.

Chapter 2: A-Z Reference 92

CalendarCols Property
Applies To: Calendar, DateTimePicker

Description

The CalendarCols property specifies the colours used for various elements in the Cal-
endar object.

CalendarCols is a 6-element integer vector whose elements specify the colours as fol-
lows:

[1] Background colour displayed between months

[2] Background colour displayed within the month.

[3] Text colour within a month

[4] Background colour displayed in the calendar's title

[5] Colour used to display text within the calendar's title

[6]
Colour used to display header day and trailing day text. Header and
trailing days are the days from the previous and following months that
appear on the current month calendar.

Each element of CalendarCols may be 0 (which means default colour), a negative sin-
gleton that specifies a particularWindows colour, or a 3-element integer vector of
RGB values.

Note: At the time of writing, setting the first element of CalendarCols has no effect.
Dyalog believes this to be a Windows problem that may be corrected in due course.

CalendarDblClick Event 273
Applies To: Calendar

Description

If enabled, this event is reported when the user double-clicks the left mouse button
over a Calendar object.

This event is reported for information alone. You may not disable or nullify the event
by setting the action code for the event to ¯1or by returning 0 from a callback func-
tion.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 5-element vector as follows :

Chapter 2: A-Z Reference 93

[1] Object ref or character vector

[2] Event 'CalendarDblClick' or 273

[3] Item Number integer

[4] Mouse Button integer

[5] Shift State integer. Sum of 1=shift key, 2=ctrl key, 4=Alt key

[6] Element Type integer

For the meaning of elements 3 and 6, see CalendarDown.

CalendarDown Event 271
Applies To: Calendar

Description

If enabled, this event is reported when the user depresses the left mouse button over a
Calendar object.

This event is reported for information alone. You may not disable or nullify the event
by setting the action code for the event to ¯1or by returning 0 from a callback func-
tion.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 5-element vector as follows :

[1] Object ref or character vector

[2] Event 'CalendarDown' or 271

[3] Item Number integer (see below)

[4] Mouse Button integer

[5] Shift State integer. Sum of 1=shift key, 2=ctrl key, 4=Alt key

[6] Element Type integer (see below)

The 6th element of the event message is one of the following values:

Chapter 2: A-Z Reference 94

If the value of the 6th element of the event message is 2 (CALENDARDATE), the 3rd
element is the corresponding date reported as an IDN.

If the value of the 6th element of the event message is 5 (CALENDARDAY), the 3rd
element is the index of the corresponding weekday (0-6).

If the value of the 6th element of the event message is 6 (CALENDARWEEKNUM),
the 3rd element is the date of the first (leftmost) day in the corresponding week,
reported as an IDN.

Otherwise, the 3rd element of the event message is 0.

CalendarMove Event 274
Applies To: Calendar

Description

If enabled, this event is reported when the user moves the left mouse button over a
Calendar object.

This event is reported for information alone. You may not disable or nullify the event
by setting the action code for the event to ¯1or by returning 0 from a callback func-
tion.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 5-element vector as follows :

[1] Object ref or character vector

[2] Event 'CalendarMove' or 274

[3] Item Number integer

[4] Mouse Button integer

[5] Shift State integer. Sum of 1=shift key, 2=ctrl key, 4=Alt key

[6] Element Type integer

For the meaning of elements 3 and 6, see CalendarDown.

Chapter 2: A-Z Reference 95

CalendarUp Event 272
Applies To: Calendar

Description

If enabled, this event is reported when the user releases the left mouse button over a
Calendar object.

This event is reported for information alone. You may not disable or nullify the event
by setting the action code for the event to ¯1or by returning 0 from a callback func-
tion.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 5-element vector as follows :

[1] Object ref or character vector

[2] Event 'CalendarUp' or 272

[3] Item Number integer

[4] Mouse Button integer

[5] Shift State integer. Sum of 1=shift key, 2=ctrl key, 4=Alt key

[6] Element Type integer

For the meaning of elements 3 and 6, see CalendarDown.

Cancel Property
Applies To: Button

Description

This property determines which (if any) Push button in a Form or SubForm is to be
associated with the Escape key. It has the value 1 or 0.

Pressing the Escape key will generate a Select event on the Button whose Cancel
property is 1, regardless of which object has the keyboard focus.

As only one button in a Form or SubForm can be the Cancel button, setting Cancel to
1 for a particular button automatically sets Cancel to 0 for all others in the same
Form.

Chapter 2: A-Z Reference 96

CancelToClose Method 367
Applies To: PropertySheet

Description

This method is used to change the buttons in a PropertySheet object. Its effect is to
disable the Cancel button and, if the Style of the PropertySheet is 'Standard', it
changes the text of the OK button to "Close". There is no result.

The CancelToClose method is niladic.

Caption Property
Applies To: BrowseBox, Button, ColorButton, CoolBand, FileBox, Form,

Group, Label, Menu, MenuItem, MsgBox, PropertyPage,
PropertySheet, Root, StatusField, SubForm, TabBtn, TabButton,
ToolButton

Description

The Caption property is a character vector specifying fixed text associated with the
object. For example, Caption defines the label on a Button, the title of a Form, Sub-
Form orMsgBox, the heading in a Group, and the text of a Menu or a MenuItem.

For the Root object, Caption specifies the text displayed when Alt+Tab is used to
switch to the Dyalog APL/W application. It may be used in conjunction with the
IconObj property which specifies the name of an Icon object to be displayed along-
side this text.

Its default value is an empty vector.

CaseSensitive Property
Applies To: ComboEx

Description

Specifies whether or not string searches in the items displayed by a ComboEx object
will be case sensitive. Searching occurs when text is being typed into the edit box
portion of the ComboEx

Chapter 2: A-Z Reference 97

CBits Property
Applies To: Bitmap, Clipboard, Icon

Description

The CBits property represents the pixels that make up a picture..

CBits provides an alternative representation to that provided by the Bits and Cmap
properties which apply only to images with 256 colours or under. CBits may be used
to represent both low-colour and high-colour images.

CBits is a rank-2 numeric array whose dimensions represent the rows and columns of
pixels in the image. The values in CBits represent the colour of each pixel and (for an
Icon) its transparency.

For a Bitmap, the colour value of each pixel is obtained by encoding the red, green
and blue components, i.e.

PIXEL←256⊥RED GREEN BLUE

where RED, GREEN and BLUE are numbers in the range 0-255.

CellChange Event 150
Applies To: Grid

Description

If enabled, this event is reported when the user changes the contents of a cell in a
Grid object and then attempts to move to another cell or to another control outside
the Grid.

The purpose of this event is to give the application the opportunity to perform addi-
tional validation before the update occurs (and to prevent it if necessary) or to update
other cells in the Grid as a result of the change.

The default action for the CellChange event is to update the appropriate element of
the Values property with the new data. This action can be disabled by returning 0
from the attached callback function. Notice however, that the user is not prevented
frommoving away from the cell. If you are using this event to perform additional val-
idation and you require the user to correct the data before moving away, you must
force the user back to the cell in question by generating a CellMove event.

Chapter 2: A-Z Reference 98

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is an 8-element vector as follows:

[1] Object ref or character vector

[2] Event 'CellChange' or 150

[3] Cell row integer

[4] Cell column integer

[5] New data number or character array

[6] Object name character vector (name of object to which the user has
transferred focus)

[7]
New cell
(row) integer

[8]
New cell
(column) integer

If the user moves to another cell in the Grid, the 6th element of the event message is
the name of the Grid object and elements 7 and 8 specify the new cell address (⎕IO
dependent).

If the user switches the input focus to another control or selects a MenuItem, the 6th
element of the event message contains the name of that control or MenuItem. If the
user switches to another application, the 6th element of the event message is an
empty character vector. In all these cases, the 7th and 8th elements are 0.

The 5th element of the event message contains the data value that will be used to
update the Values property. This will be numeric if the FieldType of the associated
Edit object is Numeric, LongNumeric, Date, LongDate or Time. Otherwise, it will be
a character array.

An application can update an individual cell in the Grid under program control by
calling CellChange as a method. If so, the New object, New cell row and New cell col-
umn parameters may be omitted.

Chapter 2: A-Z Reference 99

CellChanged Event 164
Applies To: Grid

Description

If enabled, this event is reported after the user has changed the contents of a cell in a
Grid object and then moved to another cell or to another control outside the Grid.
The purpose of this event is to give the application the opportunity to perform cal-
culations, and perhaps to update other cells in the Grid as a result of the change.

Note that this event is reported after the change has taken place, and after the Values
property has been updated. Furthermore, neither setting the event action code to ¯1
nor returning 0 from a callback function has any effect. If you wish to validate the
new data you should use the CellChange (150) event instead.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is an 5-element vector as follows:

[1] Object ref or character vector

[2] Event 'CellChanged' or 164

[3] Cell row integer

[4] Cell column integer

[5] New data number or character array

The 5th element of the event message contains the data value that has been used to
update the Values property. This will be numeric if the FieldType of the associated
Edit object is Numeric, LongNumeric, Date, LongDate or Time. Otherwise, it will be
a character array.

If you want to update an individual cell under program control, you may call Cell-
Change , but not CellChanged, as a method.

Chapter 2: A-Z Reference 100

CellDblClick Event 163
Applies To: Grid

Description

If enabled, this event is reported when the user double-clicks a mouse button whilst
over a cell in a Grid. The purpose of this event is to allow an application to enable
some special action on double-click. This event may not be disabled.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 9 element vector as follows :

[1] Object ref or character vector

[2] Event 'CellDblClick' or 163

[3] Y y-position of mouse (number)

[4] X x-position of mouse (number)

[5] Button

button pressed (number)
1 = left button
2 = right button
4 = middle button

[6] Shift State

sum of shift key codes (number)
1 = Shift key is down
2 = Ctrl key is down
4 = Alt key is down

[7] Cell row integer

[8] Cell column integer

[9] Title index integer

The y and x position of the mouse are reported relative to the top-left corner of the
Grid.

The cell row and column are ⎕IO dependent

If the user clicks over a row title, the value reported for the column is ¯1, and the
value reported for Title index is the index of that row title in RowTitles, or, if Row-
Titles is not defined, the row number. Column titles are handled in a similar fashion.

Chapter 2: A-Z Reference 101

CellDown Event 161
Applies To: Grid

Description

If enabled, this event is reported when the user presses a mouse button down whilst
over a cell in a Grid. The purpose of this event is to allow an application to display a
pop-up Menu or a Locator over a cell in a Grid or to take some other special action.

The default action is to generate a CellMove event which will then position the user
on the new cell. This action can be prevented by returning 0 from the callback func-
tion, in which case the normally ensuing CellMove event will not occur.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is an 9 element vector as follows :

[1] Object ref or character vector

[2] Event 'CellDown' or 161

[3] Y y-position of mouse (number)

[4] X x-position of mouse (number)

[5] Button

button pressed (number)
1 = left button
2 = right button
4 = middle button

[6] Shift State

sum of shift key codes (number)
1 = Shift key is down
2 = Ctrl key is down
4 = Alt key is down

[7] Cell row integer

[8] Cell column integer

[9] Title index integer

The y and x position of the mouse are reported relative to the top-left corner of the
Grid.

The cell row and column are ⎕IO dependent

If the user clicks over a row title, the value reported for the column is ¯1, and the
value reported for Title index is the index of that row title in RowTitles, or, if Row-
Titles is not defined, the row number. Column titles are handled in a similar fashion.

Chapter 2: A-Z Reference 102

An application can position the user on a particular cell in a Grid by calling Cell-
Down as a method, but it is recommended that a CellMove event is used instead.

CellError Event 157
Applies To: Grid

Description

If enabled, this event is reported when the user inserts invalid data into the Edit
object associated with a cell in a Grid object and then attempts to move to another
cell or to another control outside the Grid. It is also reported if the user selects a Men-
uItem.

The default action for the CellError event is to sound the bell (beep). This action can
be disabled by returning 0 from the attached callback funtion. Whatever the result of
the callback, the user will be prevented frommoving to another cell in the Grid and
the CurCell and Values properties will remain unchanged. The user is not prevented
from switching to any other control or to another application. However, if and when
the user returns to the Grid, the current cell (CurCell) remains the invalid one and the
user may not select a different one until the invalid data in the cell has been cor-
rected. If you wish to allow the user to move to another cell without correcting the
data, you may do so by generating a CellMove event explicitly. However, the Values
property will remain unchanged and the invalid contents of the Edit object will
simply be discarded.

The event message reported as the result of ⎕DQ or supplied as the right argument to
your callback function, is an 8-element vector as follows:

[1] Object ref or character vector

[2] Event 'CellError' or 157

[3] Cell row integer

[4] Cell column integer

[5] Invalid data character vector

[6] Object name character vector (name of object to which the user has
transferred focus)

[7]
New cell
(row) integer

[8]
New cell
(column) integer

Chapter 2: A-Z Reference 103

If the user moves to another cell in the Grid, the 6th element of the event message is
the name of the Grid object and elements 7 and 8 specify the cell address (⎕IO
dependent).

If the user switches the input focus to another control or selects a MenuItem, the 6th
element of the event message contains the name of that control or MenuItem. If the
user switches to another application, the 6th element of the event message is an
empty character vector. In all these cases, the 7th and 8th elements are 0.

The 5th element of the event message contains the character vector in the Text prop-
erty of the associated Edit object which is inconsistent with its FieldType.

CellFonts Property
Applies To: Grid

Description

This property specifies the font objects to be used to display the Values in a Grid
object.

CellFonts is either a single ref or a simple character vector, or a vector of refs or char-
acter vectors. If it specifies a single font object this will be used to draw the text in all
of the cells in the Grid. If it specifies more than one font object, these are mapped to
individual cells through the CellTypes property.

CellFromPoint Method 200
Applies To: Grid

Description

This method converts from Grid co-ordinates to cell co-ordinates.

The argument to CellFromPoint is a 2-element array as follows:

[1] y-coordinate number in Grid co-ordinates

[2] x-coordinate number in Grid co-ordinates

The result is a 2-element vector containing the following:

[1] y-coordinate number in cell co-ordinates

[2] x-coordinate number in cell co-ordinates

Chapter 2: A-Z Reference 104

CellHeights Property
Applies To: Grid

Description

This property specifies the height of each row in a Grid object in the units specified
by its Coord property. It may be a scalar or a vector whose length is the same as the
number of rows implied by the Values property. If it is a scalar, it specifies a constant
row height. If it is a vector it specifies the height of each row individually.

CellMove Event 151
Applies To: Grid

Description

If enabled, this event is reported when the user attempts to position the cursor over a
cell in a Grid by clicking the left mouse button or by pressing a cursor movement
key. The purpose of this event is to allow an application to perform some action prior
to the user entering a cell, or to inhibit entry to a cell.

The default action is to position the user on the new cell. This action can be pre-
vented by returning a 0 from the callback function attached to the event.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 7 element vector as follows :

[1] Object ref or character vector

[2] Event 'CellMove' or 151

[3] New cell (row) integer

[4] New cell (column) integer

[5] Scroll flag 0 or 1

[6] Selection flag 0, 1 or 2

[7] Mouse flag 0 or 1

The 5th element of the event message is 1 if switching to the new cell would cause
the Grid to scroll.

Chapter 2: A-Z Reference 105

The 6th element of the event message is 1 if the user is moving to the new cell by
extending the selection. It is 2 if the user selects an entire row or column (by clicking
on a title), which moves the current cell to the first one in the selection.

The 7th element of the event message is 1 if the mouse is used to switch to a new cell.

An application can position the user on a particular cell in a Grid by calling Cell-
Move as a method. If so, the argument need contain only the New cell row and New
cell column parameters.

CellOver Event 160
Applies To: Grid

Description

If enabled, this event is reported when the user moves the mouse poimter whilst over
a cell in a Grid.

There is no default action for this event.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is an 9 element vector as follows :

[1] Object ref or character vector

[2] Event 'CellOver' or 160

[3] Y y-position of mouse (number)

[4] X x-position of mouse (number)

[5] Button

button pressed (number)
1 = left button
2 = right button
4 = middle button

[6] Shift State

sum of shift key codes (number)
1 = Shift key is down
2 = Ctrl key is down
4 = Alt key is down

[7] Cell row integer

[8] Cell column integer

[9] Title index integer

Chapter 2: A-Z Reference 106

The y and x position of the mouse are reported relative to the top-left corner of the
Grid.

The cell row and column are ⎕IO dependent

If the user moves the mouse pointer over a row title, the value reported for the column
is ¯1, and the value reported for Title index is the index of that row title in Row-
Titles, or, if RowTitles is not defined, the row number. Column titles are handled in a
similar fashion.

CellSelect Property
Applies To: Grid

Description

The Grid supports the selection of a contiguous block of cells by the user, using the
mouse and/or the keyboard. The ability to select a range of cells is determined by the
CellSelect property. This may be a character vector or a vector of character vectors
comprising the following :

Chapter 2: A-Z Reference 107

'Rows'
User may select an entire row by clicking on a row title
and may select multiple rows by dragging the mouse
over contiguous row titles.

'MultiRows'
Same as 'Rows', but user may additionally select
several non-contiguous rows and blocks of rows using
the Ctrl key.

'Columns'
User may select an entire column by clicking on a
column title and may select multiple columns by
dragging the mouse over contiguous column titles.

'MultiColumns'
Same as 'Columns', but user may additionally select
several non-contiguous columns and blocks of columns
using the Ctrl key.

'Partial'
User may select any rectangular block of cells by either
dragging the mouse or using Shift+cursor keys.

'MultiPartial'
Same as 'Partial', but user may additonally select
multiple rectangular blocks of cells using the Ctrl key.

'Whole'
User may select the entire Grid by clicking in the space
to the left of the column titles and above the row titles.

'Any'
Same as ('Rows''Columns''Partial''Whole').
This is the default.

'Multi'

Same as
(
'MultiRows'
'MultiColumns''MultiPartial''Whole').

'None' User may not select any cells in the Grid.

For example, the following expression would allow the user to select only whole
rows and columns:

gridname ⎕WS 'CellSelect' ('Rows' 'Columns')

Setting CellSelect to ('Rows' 'Columns' 'Whole' 'Partial') is equiv-
alent to setting it to 'Any'.

When the user performs a selection , the Grid generates a GridSelect event.

The range of cells currently selected is given by the SelItems property. You can
obtain the current selection by querying this property with ⎕WG and you can set it
with ⎕WS.

Chapter 2: A-Z Reference 108

Note that the user may delete the contents of the selected range, or cut and copy them
to the clipboard by pressing Delete, Shift+Delete or Ctrl+Insert respectively. The
user may also replace the current selection with the contents of the clipboard by press-
ing Shift+Insert. These operations generate GridDelete, GridCut, GridCopy and Grid-
Paste events which you may disable (by setting the event action code to ¯1 or to
which you may attach a callback function.

If more than one block of cells has been selected, these operations are honoured only
if the blocks begin and end on the same rows or begin and end on the same columns.
If so, the data placed in the clipboard is the result of joining the blocks horizontally
or vertically as appropriate.

You can also invoke these events as methods. This allows you to attach these actions
to MenuItems and Buttons. For example, the following expression could be used to
implement Cut as a MenuItem:

name ⎕WC 'MenuItem' 'Cu&t'('Event' 'Select'
'⍎gridname.GridCut')

In addition to the ability to copy blocks of cells through the clipboard, the user may
also drag a block of cells from one part of the Grid to another.

When the user places the mouse pointer over any of the four edges of a selected block
of cells, the cursor changes from a cross to a n arrow pointer. The user may now drag
the border of the selected block to a new location. If the Ctrl key is pressed at the
same time, the contents of the selected cells are copied to the new location. If not, the
operation is a move and the original block of cells is cleared (emptied). In either case,
the contents of the original block replace the contents of the target block (marked by
the dragging rectangle) and the target block become selected. You may only move or
copy a single block of cells in this way.

These operations generate a GridDropSel event. You may prevent the user frommov-
ing and copying blocks of cells by disabling this event (by setting its event action
code to ¯1) or you may control these operations selectively with a callback function.
Note that although the operation of inserting cells (using Ctrl+Shift) has not been
implemented, you may provide this facility yourself with the information provided
by the event message.

You may also move or copy a block of cells (which need not necessarily be selected)
under program control by calling GridDropSel event as a method.

Chapter 2: A-Z Reference 109

CellSet Property
Applies To: Grid

Description

This property identifies which cells in a Grid are set (i.e. have values) and which are
empty. Its purpose is to allow large numeric matrices containing blank cells to be dis-
played and edited efficiently.

The CellSet property is a boolean matrix with the same shape as the Values property.
If an element of CellSet is 0, the cell is defined to be empty. Empty cells are dis-
played as blank and the cell contents by the Values property are ignored.

A more direct way to handle empty cells is to set the corresponding elements of
Values to empty vectors. However, if Values is otherwise entirely numeric, this
makes the array nested when it would otherwise be simple. For large numeric
matrices, this penalty can be severe. For example, a 100x100 array of 2-byte integer
values occupies about 20Kb of workspace. Setting one or more elements of the array
to an empty vector increases its size to 200Kb. However, because it is boolean, the
size of the CellSet property for a 100x100 array is only 1.27Kb and represents a sig-
nificant saving of space.

Note that if the Values property contains text and is therefore nested anyway, the
CellSet property is not helpful in conserving workspace, although it may still be use-
ful to separate empty cells from real data.

You can dynamically change a single element of CellSet using the SetCellSet
method.

CellTypes Property
Applies To: Grid

Description

This property specifies the type of each cell in a Grid object. It is a matrix whose ele-
ments are indices into other property arrays (FCol, BCol, CellFonts and Input).

For example, if CellTypes[1;1] is 3, the first cell in the Grid is displayed using the
foreground colour specified by the 3rd element of FCol, the background colour spec-
ified by the 3rd element of BCol, and so forth. Note however that scalar property
arrays are extended if necessary. Therefore if you require 5 different foreground
colours but only one background colour, BCol need specify only a single colour.

Chapter 2: A-Z Reference 110

You can dynamically change a single element of CellTypes using the SetCellType
method.

CellUp Event 162
Applies To: Grid

Description

If enabled, this event is reported when the user releases a mouse button down whilst
over a cell in a Grid. This event is a companion to the CellDown event and could be
used to hide a pop-up which was displayed in response to the CellDown. The CellUp
event performs no default action and may not be disabled.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 9 element vector as follows :

[1] Object ref or character vector

[2] Event 'CellUp' or 162

[3] Y y-position of mouse (number)

[4] X x-position of mouse (number)

[5] Button

button released (number)
1 = left button
2 = right button
4 = middle button

[6] Shift State

sum of shift key codes (number)
1 = Shift key is down
2 = Ctrl key is down
4 = Alt key is down

[7] Cell row integer

[8] Cell column integer

[9] Title index integer

The y and x position of the mouse are reported relative to the top-left corner of the
Grid.

The cell row and column are ⎕IO dependent .

Chapter 2: A-Z Reference 111

If the user clicks over a row title, the value reported for the column is ¯1, and the
value reported for Title index is the index of that row title in RowTitles, or, if Row-
Titles is not defined, the row number. Column titles are handled in a similar fashion.

An application can position the user on a particular cell in a Grid by calling Cell-
Down event as a method, but it is recommended that a CellMove event is used
instead.

CellWidths Property
Applies To: Grid

Description

This property specifies the width of each column in a Grid object in the units spec-
ified by its Coord property. It may be a scalar or a vector whose length is the same as
the number of columns implied by the Values property. If it is a scalar, it specifies a
constant column width. If it is a vector it specifies the width of each column individ-
ually.

Change Event 36
Applies To: ButtonEdit, Combo, Edit, RichEdit, Spinner

Description

If enabled, this event is reported when the user alters the text in a Combo or Edit
object (by typing). The event is not applicable for a Combo with Style'Drop'
because this Style does not allow the user to alter data. The Change event is not
reported repeatedly as the user edits the data. Instead, it is reported when the user indi-
cates that he has finished with the field by :

a. clicking on another object, or
b. causing an event on another object (without altering the input focus) which

will fire a callback function or cause ⎕DQ to terminate. This can occur if the
user chooses a MenuItem, or fires a Button with the Default or Cancel prop-
erty by pressing Enter or Esc, or selects an object using an accelerator key.

Chapter 2: A-Z Reference 112

The purpose of the Change event is to allow the application to validate data which
has been newly entered to the field, before proceeding with another action. It is for
this reason that the event is fired not just when the input focus changes, but also
when the user takes some action that could cause the application to do something
else.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 3-element vector as follows :

[1] Object ref or character vector

[2] Event 'Change' or 36

[3] Object name character vector (name of object that is to receive the
focus or generate an event)

If the focus is transferred to an external application, the third element is an empty vec-
tor.

The default processing for this event is to allow the focus to change (if applicable)
and to reset the internal flag that indicates that the data in the field has changed.

If you disable the event by setting the "action" code to ¯1, or inhibit it by returning 0
from a callback, the focus change (if applicable) is allowed to proceed, but the inter-
nal flag is not reset. If you wish to prevent the focus change you must explicitly reset
the focus back onto the object that generated the event.

If the event was generated because the user switched to another application, and you
return a 0 from your callback (because the data was not valid), the flag marking the
Combo or Edit as having been changed remains set. If the user returns to your appli-
cation by re-focusing on the same Combo or Edit, nothing happens immediately, but
because the field is marked as changed (the flag was not reset) you will get another
Change event when he leaves it. However, if the user returns to your application in
some other way, e.g. by focusing on another object or by selecting a MenuItem, a sec-
ond Change event will be generated immediately.

Chapter 2: A-Z Reference 113

The following function illustrates how Change events can be processed. The Check
function referred to in line[4] is assumed to return 1 if the data is valid and 0 if not.

[0] R←VALIDATE Msg
[1] ⍝ Validates field contents after Change event
[2]
[3] ⍝ Normal exit (R←1) if data is valid
[4] →(R←Check⊃Msg)/Exit
[5]
[6] ⍝ R now 0, so field remains marked as "changed"
[7]
[8] ⍝ If user has switched to another application,
[9] ⍝ we need take no further action because we will
[10] ⍝ get a second Change event when he returns.
[11] →(''≡3⊃Msg)/Exit
[12]
[13] ⍝ Display error box (prepared earlier)
[14] 'ERR' ⎕WS 'Text' 'Data is invalid'
[15] ⎕DQ'ERR'
[16]
[17] ⍝ Restore focus to bad field
[18] ⎕NQ(⊃Msg)40
[19]
[20] Exit:

Changed Property
Applies To: ButtonEdit, Edit, PropertyPage, RichEdit, Spinner

Description

The Changed property, in conjunction with the Change event, provides the means to
control the validation of an object after the user has finished interacting with it.

Initially, the value of the Changed property of an object is set to 0. When the user
gives the focus to the object and causes either the Text or (in the case of a Spinner)
the Thumb property to be altered, the Changed property is immediately set to 1.
When the object loses the input focus and the value of the Changed property is 1, the
object generates a Change event. The value of the Changed property is then deter-
mined as follows:

If there is no callback function attached to the Change event, or if the Change event
is disabled, the Changed property is reset to 0.

Chapter 2: A-Z Reference 114

If an attached callback returns no result or returns 1, the Change property is reset to 0.

If an attached callback function returns 0, the Changed property is not altered and
remains set to 1. The object will therefore generate another Change event when the
user next tries to leave it, even if the text and/or Thumb are not altered this time.

Note that the object generates a Change event when it loses the focus only if the
value of the Changed property is 1 at the time.

CharFormat Property
Applies To: RichEdit

Description

The CharFormat property describes or applies formatting to the currently selected
text in a RichEdit object. If the selection is empty, it reports or specifies the default
character formatting for the object. It is a 5-element nested array structured as fol-
lows:

[1]

A vector of character vectors which describes the text attributes and is
comprised of the following keywords:
'Autocolour' default colour (Windows text colour)
'Bold' bold text
'Italic' bold text
'Underline' underlined
'StrikeOut' line through text
'Protected' protected (read-only) text

[2]
A character vector that specifies the face name of the font used to draw
the text

[3] Character height in Twips.

[4]
Text colour. A single integer or an enclosed vector of 3 RGB values.
The default is 0 which implies the standard Windows text colour.

[5]
Integer specifying the vertical offset of the character from the base line
in Twips. This is used to specify superscript (positive offset) and
subscript (negative offset) symbols. The default value is 0.

Chapter 2: A-Z Reference 115

When you set the character format using ⎕WC or ⎕WS the following rules apply.

If you just want to set a single text attribute (element 1) you may specify a simple vec-
tor, for example (⎕WS 'CharFormat' 'Protected') is valid and will add the
protected text attribute to the current set of text attributes.

To unset a text attribute (element 1) you must insert the tilde (~) character before the
name of the attribute. For example, the expression (⎕WS 'CharFormat'
'~Bold') will turn the bold text attribute off.

You need only specify the number of elements required, but you must insert proper
values for the elements you wish to remain unaltered. However, you may use '' in
the first element to leave the text attributes unchanged.

If there is no text selected, CharFormat specifies the default character format, i.e. the
format that will be used to draw the next (and subsequent) characters that the user
enters. If there is text selected it specifies the format of the selected block of text. If
the format is not strictly homogeneous, ⎕WGmay report the format of the first char-
acter in the selected block, or, if the block contains characters which use completely
different fonts, the result of (⎕WG 'CharFormat') will be empty.

(⎕WS 'CharFormat' ...) will set the format of the currently selected block of
text. To set the format of an arbitrary block of text you must select it first using (⎕WS
'SelText' ...).

Chapter 2: A-Z Reference 116

CharSet Property
Applies To: Font

Description

This property applies to the Classic Edition only. In the Unicode Edition, its value
is ignored.

CharSet is an integer that specifies the character encoding of the Font object.

The following table illustrates some of the character set encodings supported by Win-
dows. Note that this set may vary according to the edition ofWindows that is
installed.

Language CharSet

Western (Ansi) 0

Hebrew 177

Arabic 178

Greek 161

Turkish 162

Baltic 186

Central European 238

Cyrillic 204

Vietnamese 163

Windows fonts typically contain glyphs for the ASCII character set in their first 128
positions, and glyphs for the Western European character set in positions 129-256.
Additional sets of character glyphs are stored in positions 257 onwards in what are
sometimes referred to as codepages.

When you change the character set encoding, to (say) Greek (161), the set of Greek
characters are mapped into the top 128 positions of the font.

For example, if the CharSet is 0 (ANSI), the character code Hex EC is displayed as ì
(i-grave). However, if you change CharSet to 161 (Greek), the same character code is
displayed as the Greek µ.

Chapter 2: A-Z Reference 117

The following example illustrates how the character string 'ôï üíïìá ìïõ
Ýéíáé Ðåôå' appears differently according to the value of CharSet.

'F'⎕WC'FORM' 'CharSet Property'('Size' 300 400)
('Coord' 'Pixel')

F.Coord←'Prop'

'F.F1'⎕WC'Font' ('Size' 32) ('CharSet' 0)
'F.F2'⎕WC'Font' ('Size' 32) ('CharSet' 161)
'F.F3'⎕WC'Font' ('Size' 32) ('CharSet' 178)

STRING←'ôï üíïìá ìïõ Ýéíáé Ðåôå'

'F.E1'⎕WC'Edit'STRING(10 10)(⍬ 80)('Font' 'F.F1')
'F.E2'⎕WC'Edit'STRING(40 10)(⍬ 80)('Font' 'F.F2')

('Translate' 'ANSI')
'F.E3'⎕WC'Edit'STRING(70 10)(⍬ 80)('Font' 'F.F3')

('Translate' 'ANSI')

Note that setting Translate to 'ANSI' means that characters entered into the Edit fields
using a corresponding National Language keyboard (Greek and Arabic) will appear
in that language as intended

Chapter 2: A-Z Reference 118

CheckBoxes Property
Applies To: ListView, TreeView

Description

The CheckBoxes property specifies whether or not check boxes are displayed along-
side items in a ListView or TreeView object.

CheckBoxes is a single number with the value 0 (check boxes are not displayed) or 1
(check boxes are displayed); the default is 0.

For a TreeView, CheckBoxes will only be honoured if the items have pictures asso-
ciated with them (via the ImageListObj and ImageIndex properties).

For a ListView, CheckBoxes applies to all settings of the View property.

The GetItemState method can be used to determine if a specific item in a ListView or
TreeView is checked. The result of the method will have the 13th bit set if the item is
checked.

STATE←Form.ListView.GetItemState 11
13⊃⌽(32⍴2)⊤STATE

1

The picture below illustrates the effect on the appearance of a ListView object, of set-
ting CheckBoxes to 1.

Checked Property
Applies To: MenuItem

Description

This property determines whether or not a check mark is displayed alongside the text
in a MenuItem. It is a single number with the value 0 (not checked) or 1 (checked).
The default is 0.

Chapter 2: A-Z Reference 119

ChildEdge Property
Applies To: CoolBand

Description

The ChildEdge property specifies whether or not the CoolBand leaves space above
and below its child window.

ChildEdge is a single number with the value 0 (no space) or 1 (space is provided); the
default is 0.

The following pictures illustrate the effect of the ChildEdge property.

Chapter 2: A-Z Reference 120

ChildList Property
Applies To: ActiveXContainer, ActiveXControl, Animation, Bitmap,

BrowseBox, Button, ButtonEdit, Calendar, Circle, Clipboard,
ColorButton, Combo, ComboEx, CoolBand, CoolBar, Cursor,
DateTimePicker, Edit, Ellipse, FileBox, Font, Form, Grid, Group,
Icon, Image, ImageList, Label, List, ListView, Locator, Marker,
MDIClient, Menu, MenuBar, MenuItem, Metafile, MsgBox,
OCXClass, OLEClient, OLEServer, Poly, Printer, ProgressBar,
PropertyPage, PropertySheet, Rect, RichEdit, Root, Scroll,
Separator, SM, Spinner, Splitter, Static, StatusBar, StatusField,
SubForm, SysTrayItem, TabBar, TabBtn, TabButton, TabControl,
TCPSocket, Text, Timer, TipField, ToolBar, ToolButton,
ToolControl, TrackBar, TreeView, UpDown

Description

This is a read-only property that reports the names of those objects that may be
created as children of the object in question. It is a vector of character vectors in
which the order of the items is not significant.

ChooseFont Method 240
Applies To: ActiveXControl, Button, ButtonEdit, Calendar, Combo, ComboEx,

DateTimePicker, Edit, Font, Form, Grid, Group, Label, List,
ListView, PropertyPage, PropertySheet, RichEdit, Root, Spinner,
Static, StatusBar, SubForm, TabBtn, Text, TipField, TreeView

Description

This method is used to display the standard Windows font selection dialog box.

The argument to ChooseFont is ⍬ or a 1 or 2-element array as follows:

[1] Printer name character scalar or vector.

[2] Modify flag 0 or 1.

If the argument is ⍬ or the first element of the argument is '', the user is offered a list
of fonts suitable for use on the screen. If not, the user is offered a choice of fonts suit-
able for the specified Printer object. If you omit the 2nd element, the modify flag
defaults to 0.

Chapter 2: A-Z Reference 121

The dialog box is initialised with the properties of the Font object specified in the
first element of the event message.

When the user presses the "OK" button, the "Cancel" button or closes the dialog box,
ChooseFont terminates. Its result is either 0 (user pressed "Cancel") or a 2-element vec-
tor. In the latter case, the first element is an 8-element array that describes the selected
font as described below, and the second element is a 3-element RGB colour vector.

[1] Face name of selected font (character vector)

[2] Character height in pixels (integer)

[3] Fixed width or not (boolean)

[4] Italic or not (boolean)

[5] Underline or not (boolean)

[6] Weight (integer)

[7] Angle of rotation (integer)

[8] Character set (see CharSet)

If the modify flag was 1, the Font object is redefined to match the user's selections
and all the objects that reference the Font are redrawn.

Chapter 2: A-Z Reference 122

Circle Object
Purpose: A Graphical object to draw circles, arcs, and pie-slices.

Parents ActiveXControl, Animation, Bitmap, Button, ButtonEdit, Combo,
ComboEx, Edit, Form, Grid, Group, Label, List, ListView,
MDIClient, Metafile, Printer, ProgressBar, PropertyPage,
PropertySheet, RichEdit, Scroll, Spinner, Static, StatusBar,
SubForm, TabBar, TipField, ToolBar, TrackBar, TreeView,
UpDown

Children Timer

Properties Type, Points, Radius, FCol, BCol, Start, End, ArcMode, LStyle,
LWidth, FStyle, FillCol, Coord, Visible, Event, Dragable, OnTop,
CursorObj, AutoConf, Data, Accelerator, KeepOnClose,
DrawMode, RadiusMode, MethodList, ChildList, EventList,
PropList

Methods Detach

Events Close, Create, DragDrop, MouseDown, MouseUp, MouseMove,
MouseDblClick, Help, Select

Description

The Points property contains the co-ordinates of the centre of the circle. The size of
the circle is determined by the Radius property. This specifies the radius along the x-
axis, the height is calculated so that the object is circular.

The RadiusMode property determines whether or not the circle is adjusted by a pixel,
if required in order to appear perfectly round and perfectly centred. The default value
is 0 (no adjustment is made).

The Start and/or End properties are used to draw partial circles. They specify start and
end angles respectively, measuring from the x-axis in a counter-clockwise direction
and are expressed in radians. The type of arc is controlled by ArcMode as follows :

ArcmodeEffect
0 An arc is drawn from Start to End.

1 An arc is drawn from Start to End. In addition, a single straight line is
drawn from one end of the arc to the other, resulting in a segment.

2 An arc is drawn from Start to End. In addition, two lines are drawn from
each end of the arc to the centre, resulting in a pie-slice

.

Chapter 2: A-Z Reference 123

Points, Radius, Start and End can specify vectors so that several arcs, circles, pie
slices, etc. can be drawn in one call (and with one name).

If Start is specified, but not End, end angles default to (¯1↓+\Start),○2. If End
is specified, but not Start, start angles default to 0,¯1↓+\End

This means that you can draw a pie-chart using either Start or End angles; you do not
have to specify both.

Examples:
A circle whose centre is (50,50) and radius 20

'g.p1' ⎕WC 'Circle' (50 50) 20

An arc

'g.arc' ⎕WC 'Circle' (50 50) 20 ('Start' (○0.75))
('End' (○1.25))

Complete pie

Data←12 27 21 40
ANGLES←0,¯1↓((○2)÷+/Data)×+\Data
COLS←(255 0 0)(0 255 0)(255 255 0)(0 0 255)
PATS←1 2 3 4
'g.pie' ⎕WC 'Circle' (50 50) 20 ('Start' ANGLES)

('ArcMode' 2) ('FCol' (⊂0 0 0))
('FStyle' PATS) ('FillCol' COLS)

Same pie as above, but 2nd slice is exploded by changing its centre and 4th slice is
shrunk by reducing its radius :

CY←50 52 50 50 ⍝ y-coord of centres
R←20 20 20 17.5 ⍝ radii
'g.pie' ⎕WC 'Circle' (50 CY) R ('Start' ANGLES)

('ArcMode' 1) ('FCol' (⊂0 0 0))
('FStyle' PATS) ('FillCol' COLS)

Chapter 2: A-Z Reference 124

CircleToday Property
Applies To: Calendar, DateTimePicker

Description

The CircleToday property specifies whether or not a circle is drawn around the
Today date in a Calendar object or in the drop down calendar in a DateTimePicker,
when the month containing that date is visible.

CircleToday is a single number with the value 0 (a circle is not drawn) or 1 (a circle is
drawn); the default is 1.

See also HasToday property.

ClassID Property
Applies To: ActiveXControl, OCXClass, OLEClient, OLEServer

Description

The ClassID property specifies the class identifier (usually abbreviated to CLSID) of
an APL object that is used to represent a COM object. The CLSID is a globally
unique identifier (GUID) that uniquely identifies the object.

When you create or recreate an ActiveXControl or OLEServer using ⎕WC, you may
specify ClassID. This allows you to re-use a value that was previously allocated to
that control by the system. However, you should not specify any other value because
that value could be allocated now or in the future to another object on any other com-
puter in the world. Otherwise, a new ClassID is automatically allocated by the sys-
tem.

Note that the CLSID is not actually recorded on your computer (in the registry) until
you register it using)SAVE orMake OCX, or by executing the OLERegister method.

Chapter 2: A-Z Reference 125

ClassName Property
Applies To: ActiveXControl, OCXClass, OLEClient, OLEServer

Description

For an OLEClient, the ClassName property specifies the name of the OLE object to
which an OLEClient object named by the left argument of ⎕WC is to be connected.
Similarly, for a NetControl the ClassName property specifies the name of the .Net
class to be instantiated. Note that ClassName is mandatory for ⎕WC and may not sub-
sequently be changed using ⎕WS.

For an ActiveXControl or OLEServer, ClassName specifies the external name with
which the object is registered, and by which it is referenced by other applications.

For an ActiveXControl, the external name is "Dyalog xxx Control, where xxx is the
value of the ClassName property, or, if ClassName is not specified, the name of the
ActiveXControl namespace.

For an OLEServer, the external name is "Dyalog.xxx" where xxx is derived in the
same way.

For a NetControl, the external name is the name of the .Net class which must be
expressed relative to a corresponding element of ⎕USING. For example, to load one
of the standard .Net controls:

⎕USING,←⊂'System.Windows.Forms,
system.windows.forms.dll'

Chapter 2: A-Z Reference 126

ClickComment Method 225
Applies To: Grid

Description

If enabled, a ClickComment event is generated when the user clicks the mouse in a
comment window of a Grid.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 4-element vector as follows :

[1] Object ref or character vector

[2] Event 'ClickComment' or 225

[3] Row integer

[4] Column integer

The event message reports the co-ordinates of the cell. The default action is to raise
the comment window so that it appears above all other, potentially overlapping, com-
ment windows.

Note that if the comment window relates to a row or column title, the value reported
in element [3] or [4] of the event message is ¯1.

Chapter 2: A-Z Reference 127

Clipboard Object
Purpose: This object provides access to the Windows clipboard.

Parents ActiveXControl, CoolBand, Form, OLEServer, PropertyPage,
PropertySheet, Root, TCPSocket

Children Timer

Properties Type, Event, Data, Formats, Text, Bits, CMap, CBits, MetafileObj,
Picture, Array, RTFText, Translate, Accelerator, KeepOnClose,
MethodList, ChildList, EventList, PropList

Methods Detach, Wait

Events Close, Create, ClipChange, Select

Description

When an application places data in the Windows clipboard, it may store it in one or
more formats. An application wishing to retrieve data from the clipboard can then
choose which format to read it in. Dyalog APL supports standard clipboard formats,
including CF_TEXT, CF_BITMAP and CF_METAFILE. If there is any data in the
clipboard, the Formats property lists the formats in which it may be retrieved.

In addition, the Array property may be used to set or retrieve clipboard contents in
Dyalog APL array format.

Data is read from the clipboard using ⎕WG, specifying the name of the appropriate
property for the data that you want.

If the data has been stored in CF_Text format, the value of Formats will include
'Text' and you may retrieve the data by querying the value of the Text property
with ⎕WG.

If the data has been stored in device-independent bitmap format, the value of Formats
will include 'CBits', 'Bits' and 'CMap'. To retrieve the bitmap pattern and
colour map, you may query the values of the CBits, or Bits and CMap properties
using ⎕WG.

If the data has been stored in device-dependent bitmap format, only the bitmap pat-
tern is available and Formats will contain 'Bits' but not 'CMap'. In this case you
can query the Bits property but not CMap without which you cannot realise the bit-
map. However, if data was posted in this format, it is highly probable that the current
Windows colour map applies to it. For a standard 16-colour device this is given
under the description of the CMap property.

Chapter 2: A-Z Reference 128

The following example retrieves text from the clipboard :

'CL' ⎕WC 'Clipboard'
Data ← 'CL' ⎕WG 'Text'

The next example retrieves a bitmap from the clipboard and defines it as a Bitmap
object named 'BM' ready for use :

'BM' ⎕WC 'Bitmap' '', 'CL' ⎕WG 'Bits' 'CMap'

Data may be placed in the clipboard using ⎕WC or ⎕WS. To store text, you simply set
the Text property. You may use a simple character vector or matrix, or a vector of
character vectors. For example :

'CL' ⎕WS 'Text' 'Hello World'

To store a bitmap you can set either the Picture property to the name of a Bitmap
object, or you can set the Bits and CMap properties explicitly. The former is more effi-
cient, especially for large bitmaps, for example :

'CL' ⎕WS 'Bitmap' 'BM'

or

Bits CMap ← 'BM' ⎕WG 'Bits' 'CMap'
'CL' ⎕WS ('Bits' Bits)('CMap' CMap)

Note that if you use the latter method, you must set both properties in one ⎕WS state-
ment. This is also true if you wish to store data in both Text and Bitmap formats
together.

The Metafile property allows graphical information to be restored in and retrieved
from the clipboard in Windows Metafile format. See the description of the Metafile
property for details.

A ClipChange (120) event is generated when another application places data in the
clipboard.

Chapter 2: A-Z Reference 129

ClipCells Property
Applies To: Grid

Description

This property determines whether or not the Grid displays partial cells. The default is
1. If you set ClipCells to 0, the Grid displays only complete cells and automatically
fills the space between the last visible cell and the edge of the Grid with the
GridBCol colour.

The first picture below shows a default Grid (ClipCells is 1) in which the third col-
umn of data is in fact incomplete (clipped), although this is by no means apparent to
the user. The second picture shows the effect on the Grid of setting ClipCells to 0
which prevents such potential confusion.

Chapter 2: A-Z Reference 130

ClipChange Event 120
Applies To: Clipboard

Description

If enabled, this event is reported when another application changes the contents of
the Windows clipboard.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 2-element vector as follows :

[1] Object ref or character vector

[2] Event 'ClipChange' or 120

Close Event 33
Applies To: ActiveXContainer, ActiveXControl, Animation, Bitmap,

BrowseBox, Button, ButtonEdit, Calendar, Circle, Clipboard,
ColorButton, Combo, ComboEx, CoolBand, CoolBar, Cursor,
DateTimePicker, Edit, Ellipse, FileBox, Font, Form, Grid, Group,
Icon, Image, ImageList, Label, List, ListView, Locator, Marker,
MDIClient, Menu, MenuBar, MenuItem, Metafile, MsgBox,
OLEServer, Poly, Printer, ProgressBar, PropertyPage, PropertySheet,
Rect, RichEdit, Scroll, Separator, SM, Spinner, Splitter, Static,
StatusBar, StatusField, SubForm, SysTrayItem, TabBar, TabBtn,
TabButton, TabControl, TCPSocket, Text, Timer, TipField,
ToolBar, ToolButton, ToolControl, TrackBar, TreeView, UpDown

Description

A Close event is generated when an object is destroyed. For a Form or SubForm, the
event may be generated by the user selecting "Close" from its SystemMenu. In this
case, the event is reported before the window is destroyed, and you may prevent it
from going ahead by associating a callback function which returns a result of 0.

Chapter 2: A-Z Reference 131

By trapping this event you can control termination of your application in many dif-
ferent ways. For example, you could:

l automatically close all Forms in your application when the master Form is
closed.

l prevent the user from terminating the application if it is inappropriate at that
time.

l display an "Are you sure ?" MsgBox.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function is a 2-element vector as follows :

[1] Object ref or character vector

[2] Event 'Close' or 33

CloseUp Event 46
Applies To: DateTimePicker

Description

If enabled, this event is reported by a DateTimePicker object just before the drop-
down calendar is hidden. It applies only if the Style of the DateTimePicker is
'Combo'.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 2-element vector as follows :

[1] Object ref or character vector

[2] Event 'CloseUp' or 46

This event is reported for information only and cannot be disabled or modified in any
way.

Chapter 2: A-Z Reference 132

CMap Property
Applies To: Bitmap, Clipboard, Cursor, Icon

Description

This property defines the table of colours (the colour map) used by a Bitmap or Icon
object or by a bitmap stored in the Windows clipboard. Its value is a 3-column
integer matrix of numbers in the range 0-255. Each row represents a separate colour
which is indexed (0-origin) by values in the Bits property. The 3 columns refer to the
intensities of the red, green and blue components of colour respectively.

Please note that Bits and CMap may only be used to represent an image with a colour
palette of 256 colours or less. If the colour palette is larger, the values of Bits and
CMap reported by ⎕WG will be (0 0). For a high-colour image, use Cbits instead.

When you create a Bitmap or Icon by specifying Bits and CMap, the actual colours
you obtain are not necessarily those that you specified. This is partly due to hardware
restrictions and partly due to the way in which Windows manages colours. Firstly,
your display adapter and driver limit the number of pure colours that can be dis-
played at any one time and therefore define a maximum size for the colour map. For
example, on a standardVGA you are limited to 16 different pure colours (additional
ones are provided by dithering).

Secondly, Windows reserves a certain number of colours in the colour map for its
own use. When an application requests a new colour (i.e. one that is not already
installed in the colour map), MS-Windows either assigns it to a spare entry, or allo-
cates the closest match if the colour map is full. The value of Bits and CMap after
⎕WC reflect the actual colours allocated and may bear little resemblance to the values
you assigned to these properties initially.

Note that if you are running 16 colours, MS-Windows reserves all 16 entries in the
colour map for its own use. This means that on a 16-colour system, you cannot use
any colours other than the default ones reserved by MS-Windows. In practice, the
"standard" 16-colour CMap is shown in the following table.

Chapter 2: A-Z Reference 133

Bits[] CMap Colour

1 0 0 0 Black

2 128 0 0 Dark red

3 0 128 0 Dark Green

4 128 128 0 Olive Green

5 0 0 128 Dark Blue

6 128 0 128 Dark Magenta

7 0 128 128 Dark Cyan

8 128 128 128 Dark Grey

9 192 192 192 Light Grey

10 255 0 0 Red

11 0 255 0 Green

12 255 255 0 Yellow

13 0 0 255 Blue

14 255 0 255 Magenta

15 0 255 255 Cyan

16 255 255 255 White

Table 1: The default 16-colour CMap

If you are using a 256-colour set-up, the first 9 and the last 7 entries of the 256-colour
CMap are the same as the first 9 and last 7 entries of the 16-colour CMap shown
above. The intervening entries represent additional colours or are initially unused (0
0 0). New colours that you specify will be allocated to unused entries until the table
is full.

Chapter 2: A-Z Reference 134

ColChange Method 159
Applies To: Grid

Description

This method is used to change the data in a column of a Grid.

The argument to ColChange is a 2-element array as follows:

[1] Column number integer

[2] Column data array

Note that the Column data must be a scalar or a vector whose length is equal to the
number of rows in the Grid. Its elements may be scalar numbers, character vectors or
matrices.

Collate Property
Applies To: Printer

Description

Specifies whether or not multiple copies of printer output are collated.

Collate is a single number with the value 0 or 1. If Collate is 1, multiple copies of out-
put are collated separately. If Collate is 0, copies are uncollated on output.

Collate is ignored unless Copies is >1.

The default value for Collate is derived from the current printer setting and Collate is
only effective if the printer supports this capability.

Chapter 2: A-Z Reference 135

ColLineTypes Property
Applies To: Grid

Description

This property specifies the appearance of the vertical grid lines in a Grid object.

ColLineTypes is an integer vector, whose length is normally equal to the number of
columns in the Grid. Each element in ColLineTypes specifies an index into the Grid-
LineFCol and GridLineWidth properties, thus selecting the colour and width of the
vertical grid lines.

For example, if ColLineTypes[1] is 3, the first vertical grid line in the Grid is dis-
played using the colour specified by the 3rd element of GridLineFCol, and the width
specified by the 3rd element of GridLineWidth.

Note that ColLineTypes is not ⎕IO dependant, and the value 0 is treated the same as
the value 1; both selecting the first colour and line width specified by GridLineFCol
and GridLineWidth respectively

The default value of ColLineTypes is an empty numeric vector (⍬). If so, all vertical
grid lines are drawn using the first element of GridLineFCol and GridLineWidth.

A vertical grid line is drawn down the right edge of its associated column. One pixel
is drawn inside the column of cells; additional pixels (if any) are drawn between that
column of cells and the next one to its right.

Chapter 2: A-Z Reference 136

ColorButton Object
Purpose: The ColorButton object allows the user to select a colour.

Parents ActiveXControl, Form, Grid, Group, PropertyPage, SubForm

Properties Type, Caption, Posn, Size, CurrentColor, DefaultColors,
CustomColors, OtherButton, Coord, Active, Visible, Event,
Sizeable, Dragable, CursorObj, AutoConf, Data, Attach, EdgeStyle,
Handle, Hint, HintObj, Tip, TipObj, Translate, Accelerator,
KeepOnClose, ShowDropDown, Redraw, TabIndex, MethodList,
ChildList, EventList, PropList

Methods Detach, GetTextSize, Animate, GetFocus, ShowSIP

Events Close, Create, DragDrop, Configure, ContextMenu, DropFiles,
DropObjects, Expose, Help, KeyPress, GotFocus, LostFocus,
MouseDown, MouseUp, MouseMove, MouseDblClick,
MouseEnter, MouseLeave, MouseWheel, ColorChange, DropDown

Description

The ColorButton object displays a coloured box, with an optional drop down button.
When the user clicks the ColorButton with the left mouse button, a colour selection
drop-down appears below it, allowing the user to select a new colour.

The CurrentColor property (default 0 0 0) is a 3-element integer vector that specifies
and reports the RGB value of the currently selected colour.

The DefaultColors property is a nested matrix which specifies the RGB values of the
colours shown in the colour selection box. The shape of DefaultColors determines
the number of rows and columns in the colour selection drop-down. Each element of
DefaultColors is a 3-element integer vector specifying an RGB colour value.

The OtherButton property is Boolean and specifies whether or not the user can select
a colour using the Windows colour selection dialog box.

If OtherButton is 1 (the default), the final row of the colour selection drop-down con-
tains a button labelled "Other…". If the user clicks this button, the standard Windows
colour selection dialog box is displayed, allowing the user to select any colour that
the computer can render.

If OtherButton is 0, the button labelled "Other…" is not present and the user is
restricted to the choice of colours provided by the DefaultColors property.

Chapter 2: A-Z Reference 137

The CustomColors property is a 1-row, 16-column nested matrix which specifies the
RGB values of the Colours displayed in the Custom colors section of the Windows
colour selection dialog box. Each element of CustomColors is a 3-element integer
vector specifying an RGB colour value.

The ShowDropDown property is Boolean (default 1) and specifies whether or not a
drop-down button is displayed in the ColorButton object.

When the user clicks a ColorButton with the left mouse button, the object generates
a DropDown event just before it displays the colour selection drop-down. This event
may be used to set the DefaultColors and/or CustomColors properties dynamically.

When the user selects a new colour, the ColorButton generates a ColorChange event.

Note that Pocket PC 2002 colour selection dialog box does not provide the facility
to select custom colours, so this functionality is not available in PocketAPL.

ColorChange Event 430
Applies To: ColorButton

Description

If enabled, this event is reported by a ColorButton object when the user chooses a
colour from the colour selection drop-down.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 3-element vector as follows :

[1] Object ref or character vector

[2] Event 'ColorChange' or 430

[3] New Colour 3-element integer vector

The 3rd element of the event message contains the RGB value for the selected colour.

Note that the event is reported when the user chooses a colour, whether or not the
newly selected colour differs from the one that was previously selected.

This event is reported for information only and cannot be disabled or modified in any
way.

Chapter 2: A-Z Reference 138

ColorMode Property
Applies To: Printer

Description

Specifies whether or not printing is done in colour.

ColorMode is a single number with the value 0 or 1. If ColorMode is 1, printing is
done in colour. If ColorMode is 0, printing is done using black ink only.

This property only applies to colour printers.

ColSorted Method 174
Applies To: Grid

Description

This method is used to specify that an image is to be displayed in a Grid column title
to indicate the column has been sorted.

The argument to ColSorted is a 2-element array as follows:

[1] Column number Integer.

[2] Sorted state

Integer.
-1 = Sorted Down
0 = Unsorted
1 = Sorted Up

The column title for the appropriate column is redrawn to include the appropriate
image.

If you wish to use your own images, you may specify them using the ColSortImages
property.

Chapter 2: A-Z Reference 139

'F'⎕WC'Form' 'Grid: ColSorted Method'
'F.G'⎕WC'Grid'('Posn' 0 0)(100 100)
F.G.Values←(COUNTRIES,POPULATION,[1.5]AREA)
F.G.ColTitles←'Country' 'Population' 'Area'
F.G.TitleWidth←0

Chapter 2: A-Z Reference 140

F.G.Values←(Values[⍋Values[;2];])
F.G.ColSorted 2 1

F.G.(Values←Values[⍒↑Values[;1];])
F.G.ColSorted 2 0
F.G.ColSorted 1 ¯1

Chapter 2: A-Z Reference 141

ColSortImages Property
Applies To: Grid

Description

The ColSortImages property identifies the names of, or refs to, up to three Bitmap
objects that are used to specify the sort images for a Grid object.

If ColSortImages is not specified, default images are used.

The Bitmap specified by the 1st element of ColSortImages is used to display columns
that are sorted down.

The Bitmap specified by the 2nd element of ColSortImages is used to display col-
umns that are unsorted.

The Bitmap specified by the 3rd element of ColSortImages is used to display col-
umns that are sorted up.

'F'⎕WC'Form' 'Grid: ColSortImages Property'
F.(Coord Size)←'Pixel'(313 341)
'F.fnt'⎕WC'Font' 'APL385 Unicode' 16
F.FontObj←F.fnt
BK←16 16⍴256⊥White←255 255 255

'F.gu'⎕WC'Bitmap'('CBits'BK)('MaskCol'White)
'F.gu.'⎕WC'Text' '⍋'(0 3)
'F.gd'⎕WC'Bitmap'('CBits'BK)('MaskCol'White)
'F.gd.'⎕WC'Text' '⍒'(0 3)

'F.G'⎕WC'Grid'('Posn' 0 0)F.Size
F.G.Values←#.(COUNTRIES,POPULATION,[1.5]AREA)
F.G.ColTitles←'Country' 'Population' 'Area'
F.G.CellWidths←140 100 100
F.G.TitleWidth←0

F.G.ColSortImages←'F.gd' '' 'F.gu'
F.G.(Values←Values[⍋Values[;3];])

F.G.ColSorted 3 1

Chapter 2: A-Z Reference 142

ColTitle3D Property
Applies To: ListView

Description

The ColTitle3D property is a boolean value that specifies whether or not the column
titles in a ListView object are displayed with a 3-dimensional effect. Its default value
is 1. A column heading with a 3-dimensional button appearance may be used to
imply that the user may click on it to sort by the values in that column.

ColTitle3D is only relevant if View is 'Report' and Header is 1. Note that this
property may only be set by ⎕WC and may not subsequently be changed using ⎕WS.

Chapter 2: A-Z Reference 143

ColTitleAlign Property
Applies To: Grid, ListView

Description

The ColTitleAlign property specifies the alignment of column titles. For a ListView
object this is only relevant only when the View property is set to 'Report'. Col-
TitleAlign is either a simple character vector, or a vector of character vectors with
one element per column.

For a Grid, ColTitleAlign may be:'Top', 'Bottom', 'Left', 'Right',
'Centre', 'TopLeft', 'TopRight', 'BottomLeft', or 'BottomRight'.

For a ListView object, ColTitleAlign may be 'Left', 'Right' or 'Centre'.
Also, for a ListView the column data itself is aligned likewise. Note that the first col-
umn in a ListView is always left-aligned regardless of the setting of ColTitleAlign.
This is a Windows restriction.

Note that both spellings 'Centre' and 'Center' are accepted.

ColTitleBCol Property
Applies To: Grid

Description

The ColTitleBCol property specifies the background colour of the column titles in a
Grid object

ColTitleBCol may be a scalar that specifies a single background colour to be used for
all of the column titles, or a vector that specifies the background colour of each of the
column titles individually. An element of ColTitleBCol may be an enclosed 3-ele-
ment vector of integer values in the range 0-255 which refer to the red, green and
blue components of the colour respectively, or it may be a scalar that defines a stand-
ard Windows colour element (see Bcol for details). Its default value is 0 which
obtains the colour defined for Button Face.

Chapter 2: A-Z Reference 144

ColTitleDepth Property
Applies To: Grid

Description

ColTitleDepth specifies the structure of a set of hierarchical column titles. It is an
integer vector with the same length as the ColTitles property. A value of 0 indicates
that the corresponding element of ColTitles is a top-level title. A value of 1 indicates
that the corresponding title is a sub-title of the most recent title whose ColTitleDepth
is 0; a value of 2 indicates that the corresponding title is a sub-title of the most recent
title whose ColTitleDepth is 1, and so forth. For example:

'F'⎕WC'Form'('Coord' 'Pixel')('Size' 200 498)
'F'⎕WS'Caption' 'Hierarchical Column Titles'
'F.G'⎕WC'Grid'(?10 12⍴100)(0 0)(200 498)
'F.G'⎕WS('TitleWidth' 0)('TitleHeight' 60)
'F.G'⎕WS'CellWidths' 40

Q1←'First Quarter' 'Jan' 'Feb' 'Mar'
Q2←'Second Quarter' 'Apr' 'May' 'Jun'
Q3←'Third Quarter' 'Jul' 'Aug' 'Sep'
Q4←'Fourth Quarter' 'Oct' 'Nov' 'Dec'

CT←(⊂'1995'),Q1,Q2,Q3,Q4
CD←0,16⍴1 2 2 2

'F.G'⎕WS('ColTitles'CT)('ColTitleDepth'CD)

Note that the LockColumns method is not supported in combination with hier-
archical column titles.

Chapter 2: A-Z Reference 145

ColTitleFCol Property
Applies To: Grid

Description

The ColTitleFCol property specifies the colour of the column titles in a Grid object

ColTitleFCol may be a scalar that specifies a single colour to be used for all of the col-
umn titles, or a vector that specifies the colour of each of the column titles individ-
ually. An element of ColTitleFCol may be an enclosed 3-element vector of integer
values in the range 0-255 which refer to the red, green and blue components of the
colour respectively, or it may be a scalar that defines a standard Windows colour ele-
ment (see BCol for details). . Its default value is 0 which obtains the colour defined
for Button text.

ColTitles Property
Applies To: Grid, ListView

Description

This property specifies the headings that are displayed above the columns in a Grid
object. If specified, it must be a vector of character vectors or matrices whose length
is the same as the number of columns implied by the Values property. The default
value of ColTitles is an empty character vector. In this case, the system displays
"standard" spreadsheet column titles A-Z, AA-AZ, BA-BZ and so forth.

To disable the display of column titles in a Grid, you should set the TitleHeight prop-
erty to 0.

Chapter 2: A-Z Reference 146

ColumnClick Event 320
Applies To: ListView

Description

If enabled, this event is reported when the user clicks on the column heading in a List-
View object. This event may not be disabled or affected by a callback function in
any way.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 5-element vector as follows :

[1] Object ref or character vector

[2] Event 'ColumnClick' or 320

[3] Column number Integer

[4] Button

button pressed (number)
1 = left button
2 = right button
4 = middle button

[5] Shift State
sum of shift key codes (number)
1 = Shift key is down
2 = Ctrl key is down

ColumnWidth Property
Applies To: List

Description

This property specifies the column width in pixels of a multi-column List object. See
MultiColumn property for details.

Chapter 2: A-Z Reference 147

Combo Object
Purpose: This object combines an input area with a list box and allows the

user to enter a selection by typing text or by choosing an item
from the list.

Parents ActiveXControl, CoolBand, Form, Grid, Group, PropertyPage,
SubForm, ToolBar, ToolControl

Children Circle, Cursor, Ellipse, Font, Marker, Poly, Rect, Text, Timer

Properties Type, Items, Text, Posn, Size, Style, Coord, Rows, Border, Active,
Visible, Event, VScroll, HScroll, SelItems, SelText, Sizeable,
Dragable, FontObj, FCol, BCol, CursorObj, AutoConf, Index, Data,
Attach, EdgeStyle, Handle, Hint, HintObj, Tip, TipObj, Translate,
Accelerator, AcceptFiles, KeepOnClose, Redraw, TabIndex,
MethodList, ChildList, EventList, PropList

Methods Detach, GetTextSize, Animate, GetFocus, ShowSIP, ChooseFont

Events Close, Create, FontOK, FontCancel, DragDrop, Configure,
ContextMenu, DropFiles, DropObjects, Expose, Help, KeyPress,
GotFocus, LostFocus, MouseDown, MouseUp, MouseMove,
MouseDblClick, MouseEnter, MouseLeave, MouseWheel,
DropDown, Select, Change

Description

Three types of Combo box are provided by the Style property which may be 'Drop'
(the default), 'Simple' or 'DropEdit'.

The Items property specifies the list of items which are displayed in the list box and
fromwhich the user can choose.

The SelItems property is a boolean vector which specifies which (if any) of the items
is selected. When the user chooses an item from the list, it is copied to the edit field
and a Select event is generated. At this point you may use SelItems to identify the
chosen item. You can also use SelItems to pre-select the contents of the edit field.

If the Style is 'Simple' or 'DropEdit', the user may type text into the edit field.
In these cases, the contents of the edit field may also be specified or queried using the
Text property. Note that if the user first selects an item from the list box, then changes
it in the edit field, the entry in the list box is automatically deselected. There is there-
fore no conflict between the value of Text and the value of SelItems.

Warning:Windows truncates the contents of the edit field (reflected in the value of
the Text property) to 510 characters.

Chapter 2: A-Z Reference 148

For a Combo with Style'Simple', the Index property specifies or reports the posi-
tion of Items in the list box as a positive integer value. If Index has the value "n", it
means that the "nth" item in Items is displayed on the top line in the list box. Note
that Index can only be set using ⎕WS and not by ⎕WC and is ignored if all the Items fit
in the list box. The default value for Index is ⎕IO.

The SelText property identifies the portion of the edit field that is highlighted. It is
not applicable to a Combo with Style'Drop' as the user cannot enter or change data
in its edit field.

The height of a Combo object with Style'Drop' or 'DropEdit' is defined in a
manner that is different from other objects. The height of the edit field is fixed, and is
dependent only upon the size of the font. The height of the associated drop-down list
box is determined by the Rows property. The first element of the Size property
(height) is ignored. For a Simple combo box (whose listbox is permanently dis-
played), the overall height is determined by the first element of Size. Rows is a "read-
only" property.

The VScroll property specifies whether or not a vertical scrollbar is provided. The
default value 0 means no scrollbar, setting VScroll to ¯1 or ¯2 specifies that the
Combo has a vertical scrollbar.

If the Style is 'Simple' or 'DropEdit', the HScroll property determines whether
or not the edit field may be scrolled. If HScroll is 0, the data is not scrollable, and the
user cannot enter more characters once the field is full. If HScroll is ¯1 or ¯2 the field
is scrollable, and there is no limit on the number of characters that can be entered. In
neither case however is a horizontal scrollbar provided. If Style is 'Drop', the user
is not allowed to enter data into the edit field anyway, and the value of HScroll is
ignored.

VScroll and HScroll may only be set when the object is created and may not sub-
sequently be changed.

Note that when you change the Items property using ⎕WS, the Text, SelItems and
SelText properties are all reset to their default values.

The Combo object will report a Select event (if enabled) when the user chooses an
item from the list box. It will generate a Change event (if enabled) when the user man-
ually alters the contents of the edit field and then changes the focus to another object.

Chapter 2: A-Z Reference 149

ComboEx Object
Purpose: The ComboEx object is an extended version of the Combo object

that provides additional features including item images

Parents ActiveXControl, CoolBand, Form, Group, PropertyPage, SubForm,
ToolBar, ToolControl

Children Circle, Cursor, Ellipse, Font, Marker, Poly, Rect, Text, Timer

Properties Type, Items, Text, Posn, Size, Style, Coord, Rows, Border, Active,
Visible, Event, Indents, ImageListObj, ImageIndex, SelImageIndex,
CaseSensitive, EditImage, EditImageIndent, PathWordBreak,
VScroll, HScroll, SelItems, SelText, Sizeable, Dragable, FontObj,
FCol, BCol, CursorObj, AutoConf, Index, Data, Attach, EdgeStyle,
Handle, Hint, HintObj, Tip, TipObj, Translate, Accelerator,
AcceptFiles, KeepOnClose, Redraw, TabIndex, MethodList,
ChildList, EventList, PropList

Methods Detach, ChooseFont, GetTextSize, Animate, GetFocus, ShowSIP

Events Close, Create, FontOK, FontCancel, DragDrop, Configure,
ContextMenu, DropFiles, DropObjects, Expose, Help, KeyPress,
GotFocus, LostFocus, MouseDown, MouseUp, MouseMove,
MouseDblClick, MouseEnter, MouseLeave, MouseWheel,
DropDown, Select

Description

The ComboEx object is a ComboBox that supports item images and indenting. It is a
superset of the Combo object and supports all its functionality. For further details, see
"Combo" on page 147.

For most purposes, you can use the ComboEx object in place of the Combo object
whether or not you make use of the extended features of the ComboEx.

Like the basic Combo, the list of text items in the ComboEx is specified by the Items
property. You may associate images with each of the text items using the ImageL-
istObj, ImageIndex and SelImageIndex properties.

To do so, ImageListObj specifies the name of an ImageList object that contains a set
of images. ImageIndex and SelImageIndex map individual images from the ImageList
to each of the text items specified by Items. ImageIndex specifies the image to be dis-
played when the item is not selected; SelImageIndex specifies the image to be dis-
played when the item is selected.

Chapter 2: A-Z Reference 150

The Indents property specifies the amount by which each of the items are indented in
units of 10 pixels

The appearance of the items is additionally controlled by the EditImage and Edit-
ImageIndent properties. These are boolean and their effect is summarised in the table
below. Notice that Images are displayed only if both these properties are set to 1
(which is the default).

There are certain restrictions that apply to a ComboEx object with Style 'Simple',
namely:

l images and indents do not apply to the edit control portion of the object.
l the object may not redraw properly if EditImage and/or EditImageIndent are

set to 0 or if CaseSensitive or PathWordBreak are set to 1.
l PathWordBreak does not work.

EditImageIndent

EditImage 0 1

0
No images displayed,
item text is indented as
specified by Indents

No images displayed, item text is
indented as specified by Indents plus
the width of the images in ImageList

1
No images displayed,
item text is indented as
specified by Indents

Images are displayed, items are
indented as specified by Indents

Chapter 2: A-Z Reference 151

Configure Event 31
Applies To: ActiveXControl, Animation, Button, ButtonEdit, Calendar,

ColorButton, Combo, ComboEx, CoolBar, DateTimePicker, Edit,
Form, Grid, Group, Label, List, ListView, MDIClient, ProgressBar,
PropertyPage, RichEdit, Scroll, SM, Spinner, Static, StatusBar,
SubForm, TabBar, ToolBar, ToolControl, TrackBar, TreeView,
UpDown

Description

If enabled, this event is generated when the configuration of an object (position
and/or size) is about to change.

For a Form, the event is generated when the Form is resized or moved by the user.

For any object other than a Form, it can occur in one of two ways. Firstly, whenever a
Form is resized, the system (by default) re-arranges its children so as to maintain their
relative position and size. This generates a Configure event (if enabled) for each one
of them.

Secondly, it can occur as a result of the user resizing the object directly. This facility
is enabled by setting the object's Sizeable property to 1.

Note that a Configure event is not reported when an object is moved using "drag &
drop". See Dragable (property) and DragDrop (event) for details of this operation.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 6-element vector as follows :

[1] Object ref or character vector

[2] Event 'Configure' or 31

[3] Y y-position of top left corner

[4] X x-position of top left corner

[5] H height of object

[6] W width of object

For any object, the operation can be prevented by returning a scalar 0 from the call-
back function associated with the Configure event.

Chapter 2: A-Z Reference 152

Full-Drag Considerations
The user may choose a system option, described here as full-drag, whereby the con-
tents of the window are re-arranged during a resize operation.

If you manage the geometry of your controls using the Attach property, APL honours
full drag during resize, changing the size and position of your controls dynamically
for you.

However, if you manage the geometry of controls using Configure event callbacks,
you should consider the following.

1. If full drag is in enabled, APL generates Configure events duringthe resize
operation, allowing you to dynamically alter the geometry of controls as
you wish. However, the following restrictions apply:

2. Configure callbacks will only be executed when the interpreter is idle. For
example during a ⎕DQ or during Session input (6-space prompt). If the user
attempts to move/resize a window that has Configure callbacks attached
when the interpreter is busy, the move/resize is not started. This is similar to
the operation in non full drag mode, where the move/resize is allowed but
the callback does not execute until the interpreter again becomes idle.

3. The callback cannot be traced. It is necessary to debug the callback code
with full drag disabled.

4. Any untrapped errors in the Configure callback will not halt execution in
the normal way, but will instead be reported in the Status Window. Note
that it is also not possible to trap such errors higher up the SI stack than the
Configure Callback.

5. There are some programming styles to be avoided if full dragConfigure call-
backs are to be processed correctly. For example events generated by mona-
dic ⎕NQ within a Configure callback will not be processed until the entire
resize operation has been completed.

6. It is not possible to save a workspace from within a Configure Callback in
full drag mode.

The above restrictions apply to Configure events when full drag is enabled, but only
when full drag is enabled. The behaviour of Configure callbacks with full drag dis-
abled is the same as for other events.

Chapter 2: A-Z Reference 153

Container Property
Applies To: ActiveXControl

Description

The Container property is a read-only property whose value is the ⎕OR of an Activ-
eXContainer object that represents the ActiveX Site object of the application that is
hosting the ActiveXControl.

The value of Container may be converted to a namespace using ⎕NS or ⎕WC.

The resulting object may then be used to obtain the values of ambient properties, or
to access methods exposed by the host application via OLE interfaces. See OLEQue-
ryInterface.

ContextMenu Event 410
Applies To: ActiveXControl, Animation, Button, ButtonEdit, Calendar,

ColorButton, Combo, ComboEx, CoolBar, DateTimePicker, Edit,
Form, Grid, Group, Label, List, ListView, MDIClient, ProgressBar,
PropertyPage, RichEdit, Scroll, Spinner, Static, StatusBar, SubForm,
TabBar, ToolBar, ToolControl, TrackBar, TreeView, UpDown

Description

If enabled, this event is reported when the user performs the standard Windows
action to display a ContextMenu. These include clicking/releasing the right mouse
button and pressing F10.

If the object has its own standard context menu, for example an Edit object, the
default action is to display this menu. If the object is dockable (see Docking Prop-
erty), the default action is to display the standard (English) Dyalog APL docking
menu.

You may use this event to display your own pop-up context menu, by ⎕DQ'ing it
within a callback function. In this case, your callback function should return 0 to dis-
able the standard context menu.

Chapter 2: A-Z Reference 154

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 5-element vector as follows :

[1] Object ref or character vector

[2] Event 'ContextMenu' or 410

[3] (reserved) Empty character vector

[4] Y y-position of the mouse (number)

[5] X x-position of the mouse (number)

CoolBand Object
Purpose: The CoolBand object represents an area in a CoolBar that contains

a child window.

Parents CoolBar

Children Bitmap, BrowseBox, Button, Clipboard, Combo, ComboEx, Cursor,
Edit, FileBox, Font, Grid, Group, Icon, ImageList, Label, List,
ListView, Menu, Metafile, MsgBox, OCXClass, OLEClient,
Printer, ProgressBar, RichEdit, Scroll, Spinner, Static, StatusBar,
SubForm, TabControl, TCPSocket, Timer, TipField, ToolBar,
ToolControl, TrackBar, TreeView, UpDown

Properties Type, Caption, Posn, Size, Visible, Event, ImageIndex, FCol, BCol,
Picture, Index, Data, KeepOnClose, ChildEdge, NewLine,
GripperMode, Dockable, UndocksToRoot, MethodList, ChildList,
EventList, PropList

Methods Detach

Events Close, Create, DockStart, DockMove, DockRequest, DockAccept,
DockEnd, DockCancel

Description

The CoolBand object is a container object that represents a band in a CoolBar.

A CoolBand can have any combination of a gripper bar, a bitmap, a text label, and a
single child object.

A CoolBand may not contain more than one child object, but that child object may
itself be a container such as a ToolControl or a SubForm.

Chapter 2: A-Z Reference 155

The Caption property specifies a text string to be displayed to the left of the Cool-
Band. The colour of the text is specified by the Fcol property.

The ImageIndex property specifies an optional picture which is to be displayed along-
side the Caption. If specified, ImageIndex is an index into an ImageList whose name
is referenced via the ImageListObj property of the parent CoolBar.

The background in a CoolBand may be specified using its Bcol or Picture properties.
Although typically, the visible background area is small, it is visible through a trans-
parent ToolControl.

The ChildEdge property specifies whether or not the CoolBand leaves space above
and below its child window.

The GripperMode property specifies whether or not the CoolBand has a gripper bar
which is used to reposition and resize the CoolBand within its parent CoolBar. Grip-
perMode may be 'Always'(the default), 'Never' or 'Auto'.

The position of a Cool Band within a CoolBar is determined by its Index and
NewLine properties, and by the position and size of preceding CoolBand objects in
the same CoolBar. For a CoolBand, Posn is a read-only property that reports its posi-
tion but Posn may not be used to set it.

The Index property specifies the position of a CoolBand within its parent CoolBar,
relative to other CoolBands and is ⎕IOdependant. Initially, the value of Index is
determined by the order in which the CoolBands are created. You may re-order the
CoolBands within a CoolBar, under program control, by changing Index with ⎕WS.

The NewLine property specifies whether or not the CoolBand occupies the same row
as an existing CoolBand, or is displayed on a new line within its CoolBar parent.
The value of NewLine in the first CoolBand in a CoolBar is always 1, even if you
specify it to be 0. You may move a CoolBand to the previous or next row by chang-
ing its NewLine property (using ⎕WS)from 1 to 0, or from 0 to 1 respectively.

The 2nd element of the Size property determines the width of the CoolBand; the
value of the 1stelement is read-only.

Size may only be specified by ⎕WC. However, when you create a CoolBand, it will
automatically occupy all the available space in the current row, to the right of any
preceding CoolBands. Only when you create another CoolBand in the same row,
will the Size of the first CoolBand be honoured. The rightmost CoolBand will
always extend to the right edge of the CoolBar, whatever its Size.

If you create two or more CoolBands in the same row and you do not specify Size,
the first CoolBand will be maximised, and the others minimised.

When the user drags a CoolBand to a different row its Index and NewLine properties
may change, as may the Index and NewLine properties of any another CoolBand that
is affected by the operation.

Chapter 2: A-Z Reference 156

If you wish to remember the user's chosen layout when your application terminates,
you must store the values of Index x, Size and NewLine for each of the CoolBands.
When your application is next started, you must re-create the CoolBands with the
same values of these properties.

CoolBar Object
Purpose: The CoolBar object acts as a container for CoolBand objects.

Parents ActiveXControl, Form

Children CoolBand, ImageList, Menu, Timer

Properties Type, Posn, Size, Align, Event, ImageListObj, FCol, BCol,
CursorObj, Data, Attach, Handle, KeepOnClose, BandBorders,
DblClickToggle, FixedOrder, VariableHeight, DockChildren,
Redraw, MethodList, ChildList, EventList, PropList

Methods Detach, GetTextSize, Animate, GetFocus, ShowSIP

Events Close, Create, DragDrop, Configure, ContextMenu, DropFiles,
DropObjects, Expose, Help, DockStart, DockMove, DockRequest,
DockAccept, DockEnd, DockCancel

Description

The CoolBar and CoolBand objects provide an interface to Windows Rebar Controls

A CoolBar contains one or more bands (CoolBand objects). Each band can have any
combination of a gripper bar, a bitmap, a text label, and a single child object.

Using the gripper bars, the user may drag bands from one row to another, resize bands
in the same row, and maximise or minimise bands in a row.

The following example illustrates a CoolBar containing 2 CoolBands each of which
is displaying a ToolControl object.

Chapter 2: A-Z Reference 157

'F'⎕WC'Form' 'CoolBar Object with ToolControls'('Size' 25 50)
'F.IL'⎕WC'ImageList'('Masked' 0)('MapCols' 1)
'F.IL.'⎕WC'Bitmap'('ComCtl32' 120)⍝ STD_SMALL

'F.CB'⎕WC'CoolBar'

:With 'F.CB.C1'⎕WC'CoolBand'
'TB'⎕WC'ToolControl'('ImageListObj' '#.F.IL')
'TB.B1'⎕WC'ToolButton' 'New'('ImageIndex' 7)
'TB.B2'⎕WC'ToolButton' 'Open'('ImageIndex' 8)
'TB.B3'⎕WC'ToolButton' 'Save'('ImageIndex' 9)

:EndWith

:With 'F.CB.C2'⎕WC'CoolBand'
'TB'⎕WC'ToolControl'('ImageListObj' '#.F.IL')
'TB.B1'⎕WC'ToolButton' 'Cut'('ImageIndex' 1)
'TB.B2'⎕WC'ToolButton' 'Copy'('ImageIndex' 2)
'TB.B3'⎕WC'ToolButton' 'Paste'('ImageIndex' 3)
'TB.B4'⎕WC'ToolButton' 'Undo'('ImageIndex' 4)
'TB.B5'⎕WC'ToolButton' 'Redo'('ImageIndex' 5)

:EndWith

Chapter 2: A-Z Reference 158

The CoolBar allows the user to organise the CoolBands within it as required. The
next three pictures illustrate this feature.

after user has moved band 2 into row 1

after user has maximised band 1

after user has maximised band 2

Chapter 2: A-Z Reference 159

The second example illustrates a CoolBar containing 3 CoolBands displaying an
Edit, Combo and multi-line Edit respectively.

'F'⎕WC'Form' 'CoolBar Object with simple controls'('Size' 25 40)
'F'⎕WS'Coord' 'Pixel'

'F.CB'⎕WC'CoolBar'

:With 'F.CB.C1'⎕WC'CoolBand'
'E1'⎕WC'Edit' 'Edit1'

:EndWith

:With 'F.CB.C2'⎕WC'CoolBand'
'C1'⎕WC'Combo'('One' 'Two' 'Three')('SelItems' 0 1 0)

:EndWith

:With 'F.CB.C3'⎕WC'CoolBand'
'E2'⎕WC'Edit'(3 5⍴'Edit2')('Style' 'Multi')

:EndWith

Chapter 2: A-Z Reference 160

The VariableHeight property specifies whether or not the CoolBar displays bands in
different rows at the minimum required height (the default), or all the same height.

The BandBorders property specifies whether or not narrow lines are drawn to sep-
arate adjacent bands. The default is 0 (no lines).

The DblClickToggle property specifies whether or not the user must single-click (the
default) or double-click to toggle a child CoolBand between its maximised and mini-
mised state.

The FixedOrder property specifies whether or not the CoolBar displays
CoolBands in the same order. If FixedOrder is 1, the user may move bands to dif-
ferent rows, but the band order is static. The default is 0. Note that when the user
moves a CoolBand within a CoolBar, its Index and (potentially) NewLine properties
will change to reflect its new position.

If you wish to display pictures in one or more of the CoolBands owned by a CoolBar,
you do so by setting the ImageListObj property to the name of an ImageList object
which contains the pictures. Pictures are allocated to individual CoolBands via their
ImageIndex properties.

Coord Property
Applies To: ActiveXControl, Animation, Bitmap, Button, ButtonEdit, Calendar,

Circle, ColorButton, Combo, ComboEx, DateTimePicker, Edit,
Ellipse, Form, Grid, Group, Image, Label, List, ListView, Locator,
Marker, MDIClient, Menu, Metafile, Poly, Printer, ProgressBar,
PropertyPage, PropertySheet, Rect, RichEdit, Root, Scroll, SM,
Spinner, Splitter, Static, StatusBar, StatusField, SubForm, TabBar,
Text, ToolBar, TrackBar, TreeView, UpDown

Description

This property defines an object's co-ordinate system. It is a character string with one
of the following values; 'Inherit', 'Prop', 'Pixel', 'User' or 'Cell'
(graphics children of a Grid only).

If Coord is 'Inherit', the co-ordinate system for the object is inherited from its
parent. Note that the default value of Coord for the system object '.'is 'Prop', so
by default all objects created by ⎕WC inherit 'Prop'.

If Coord is 'Prop', the origin of the object's parent is deemed to be at its top left
interior corner, and the scale along its x- and y-axes is 100. The object's position and
size (Posn and Size properties) are therefore specified and reported as a percentage of
the dimensions of the parent object, or, for a Form, of the screen.

Chapter 2: A-Z Reference 161

If Coord is 'Pixel', the origin of the object's parent is deemed to be at its top left
interior corner, and the scale along its x- and y-axes is measured in physical pixel
units. The object's size and position (Posn and Size properties) are therefore reported
and set in physical pixel units. If you set Coord on the system object to 'Pixel',
the value of its Size property gives you the resolution of your screen, e.g. (480,640).
Note that pixels are numbered from 0 to (Size -1).

If Coord is 'User', the origin and scale of the co-ordinate system are defined by the
values of the YRange and XRange properties of the parent object. Each of these is a
2-element numeric vector whose elements define the co-ordinates of top left and bot-
tom right interior corners of the (parent) object respectively.

Note that if Coord is 'User' and you change the values of YRange and/or
XRange of the parent, the object (and all its siblings with Coord 'User') are
redrawn (and clipped) according to the new origin and scale defined for the parent.
The values of their Posn, Size and Points properties are unaffected. Changing
YRange and/or XRange therefore provides a convenient and efficient means to "pan
and zoom".

The Coord property for graphic objects created as a children of a Grid may also be set
to Cell. Apart from being easier to compute, a graphic drawn using cell coordinates
will expand and contract when the grid rows and columns are resized.

Example:
This statement creates a button 10 pixels high, 20 pixels wide, and 5 pixels down
and along from the top-left corner of the parent Form.

'TEST.B1'⎕WC'Button' 'OK'(5 5)(10 20)('Coord'
'Pixel')

If you set Coord to 'Pixel' in the Root object '.', then query its Size, you get the
dimensions of the screen in pixels, i.e.

'.' ⎕WS 'Coord' 'Pixel'
'.' ⎕WG 'Size'

480 640

Copies Property
Applies To: Printer

Description

Specifies the number of copies to be printed.

Copies is a non-zero scalar integer value whose default is defined by the current
printer settings.

Chapter 2: A-Z Reference 162

Create Event 34
Applies To: ActiveXContainer, ActiveXControl, Animation, Bitmap,

BrowseBox, Button, ButtonEdit, Calendar, Circle, Clipboard,
ColorButton, Combo, ComboEx, CoolBand, CoolBar, Cursor,
DateTimePicker, Edit, Ellipse, FileBox, Font, Form, Grid, Group,
Icon, Image, ImageList, Label, List, ListView, Locator, Marker,
MDIClient, Menu, MenuBar, MenuItem, Metafile, MsgBox,
OLEServer, Poly, Printer, ProgressBar, PropertyPage, PropertySheet,
Rect, RichEdit, Scroll, Separator, SM, Spinner, Splitter, Static,
StatusBar, StatusField, SubForm, SysTrayItem, TabBar, TabBtn,
TabButton, TabControl, TCPSocket, Text, Timer, TipField,
ToolBar, ToolButton, ToolControl, TrackBar, TreeView, UpDown

Description

If enabled, this event is reported after an object has been created. You may not nul-
lify or modify the event with a 0-returning callback, nor may you generate the event
using ⎕NQ, or call it as a method.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 3-element vector as follows :

[1] Object ref or character vector

[2] Event 'Create' or 34

[3] Flag 1 = object was created by ⎕WC
0 = object was created by)LOAD,)COPY or ⎕OR

This event also applies to the Session object ⎕SE and may be used to fire a start-up
function (in the ⎕SE namespace) when APL initialises.

Chapter 2: A-Z Reference 163

Cue Property
Applies To: ButtonEdit, Edit

Description

This property specifies optional text to be displayed when a ButtonEdit or an Edit
object is empty. For an Edit object it applies only if the Style of the Edit object is
'Single'.

Note that this feature only apples if Native Look and Feel (see page 36) is enabled.

The Boolean property ShowCueWhenFocused determines whether or not the cue
should also be displayed once the user has tabbed into or clicked on the input field
(and thus given it the focus).

Example
'F' ⎕WC 'Form' 'Cue Property'
'F.E' ⎕WC 'Edit'
F.E.Cue←'Enter Password'

Chapter 2: A-Z Reference 164

CurCell Property
Applies To: Grid

Description

This property specifies or reports the current cell in a Grid object. The current cell is
the one that is currently addressed by the user. The current cell is identified visibly if
it has an associated object, other than an external. Label object.

CurrentColor Property
Applies To: ColorButton

Description

The CurrentColor property is a 3-element integer vector that specifies and reports the
RGB value of the currently selected colour in a ColorButton object. Its default value
is (0 0 0) which is black.

CurrentState Property
Applies To: TCPSocket

Description

The CurrentState property is a read-only property that reports the current state of a
TCPSocket object. Its possible values and their means are as follows:

CurrentState Description

'Open'
a client socket that is not yet connected or a UDP
socket

'Bound' a server socket that has been bound

'Listening'
a server socket to which a client has not yet
connected

'Connected' a client or server socket that is connected

'IhaveClosed' a temporary state on the way to Closed

'PartnerHasClosed' a temporary state on the way to Closed

'Closed'
a socket that has been closed by both client and
server

Chapter 2: A-Z Reference 165

Cursor Object
Purpose: This object defines a cursor.

Parents ActiveXControl, Animation, Button, Calendar, Combo, ComboEx,
CoolBand, DateTimePicker, Edit, Form, Grid, Group, ImageList,
Label, List, ListView, OLEServer, ProgressBar, PropertyPage,
PropertySheet, RichEdit, Root, Scroll, SM, Static, StatusBar,
SubForm, TCPSocket, ToolBar, ToolControl, TrackBar, TreeView,
UpDown

Children Timer

Properties Type, File, Bits, CMap, Mask, HotSpot, KeepBits, Event, Data,
Handle, Accelerator, KeepOnClose, MethodList, ChildList,
EventList, PropList

Methods Detach, FileRead, FileWrite

Events Close, Create, Select

Description

The File property defines the name of a cursor file associated with the Cursor object,
or it specifies the name of a DLL and the resource number or name of the cursor
therein. If you omit the file extension, the system assumes .CUR. To use an animated
cursor you must therefore specify the .AMI extension explicitly.

If the value of the File property is set by ⎕WS, no immediate action is taken, but the
corresponding file may subsequently be read or written using the FileRead or FileW-
rite methods.

The Bits and Mask properties define the appearance of the cursor. Both are boolean
matrices with a shape of 32 32. The colour of each pixel in the cursor is defined by
the following table. Note that a 0 in Bits combined with a 1 in Mask causes the cor-
responding pixel to be the colour of the background. This is used to give the cursor a
non-rectangular shape.

Bits 0 1 0 1

Mask 0 0 1 1

Pixel Black White Background Inverse

The HotSpot property determines the point within the cursor that registers its posi-
tion over another object.

A Cursor is used by setting the CursorObj property of another object to its name or
ref.

Chapter 2: A-Z Reference 166

CursorObj Property
Applies To: ActiveXControl, Button, ButtonEdit, Calendar, Circle,

ColorButton, Combo, ComboEx, CoolBar, DateTimePicker, Edit,
Ellipse, Form, Grid, Group, Label, List, ListView, Locator,
MDIClient, Poly, ProgressBar, Rect, RichEdit, Root, Scroll, SM,
Spinner, Splitter, Static, StatusBar, SubForm, TabBar, Text,
ToolBar, TrackBar, TreeView, UpDown

Description

This property is used to associate a particular cursor with an object. Its value is either
a simple scalar number which specifies a standard Windows cursor, or the name of, or
ref to, a Cursor object. The standard Windows cursors are :

0 arrow (Windows default)

1 hourglass

2 crosshair

3 I-Beam

4 crossing vertical/horizontal double-headed arrows

5 diagonal double-headed arrows (left-to-right)

6 vertical double-headed arrows

7 diagonal double-headed arrows (right-to-left)

8 horizontal double-headed arrows

9 upward pointing arrow

10 box

11 crossing vertical/horizontal double-headed arrows

12 no-entry sign

13 arrow with hourglass

If CursorObj is set to anything other than an empty vector (which is the default) it
defines the appearance of the cursor when the mouse pointer is moved into the
object. If CursorObj is an empty vector, the shape of the cursor remains unchanged
when the mouse pointer enters the object. In effect, the cursor is "inherited" from its
parent. Exceptions to this rule are certain objects which have special cursors by
default.

Chapter 2: A-Z Reference 167

If the value of CursorObj for the Root object is set to anything other than an empty
vector, it applies to allForms and their children, irrespective of their own CursorObj
values. Therefore, if you want to indicate that your application is "working" and is
not responsive to input, you can simply do :

'.' ⎕WS 'CursorObj' 1 ⍝ Hourglass cursor

Then to reset the application you do :

'.' ⎕WS 'CursorObj' ''

CustomColors Property
Applies To: ColorButton

Description

The CustomColors property is a 1-row, 16-column nested matrix which specifies the
RGB values of the colours displayed in the Custom colors section of the Windows
colour selection dialog box when displayed by a ColorButton object.

Each element of CustomColors is a 3-element integer vector specifying an RGB
colour value.

By default, each element of CustomColors is (0 0 0). If the user selects a new custom
colour from the Windows colour selection dialog box, its value will be reported by
CustomColors. CustomColors must always have shape (1 16).

Note that CustomColors is maintained separately for each separate ColorButton, and
CustomColors defaults to (1 16⍴⊂0 0 0) for each new ColorButton that you
create. If you want to maintain a global custom colour table for your application, you
must do this yourself.

Note that the Pocket PC 2002 colour selection dialog box does not provide the facil-
ity to select custom colours, so this functionality is not available in PocketAPL.

Chapter 2: A-Z Reference 168

CustomFormat Property
Applies To: DateTimePicker

Description

Specifies a custom format for the date/time display in a DateTimePicker.

CustomFormat is a character vector that may contain a mixture of date/time format
elements and body text. The date/time elements are replaced by the actual date/time
values when the object is displayed. The body text is displayed as-is. Note that Cus-
tomFormat may only be specified when the DateTimePicker object is created.

The date/time elements are defined by the following groups of characters, notice that
they are case-sensitive:

Element Description

d The one- or two-digit day.

dd The two-digit day. Single-digit day values are preceded by a zero.

ddd The three-character weekday abbreviation.

dddd The full weekday name.

h The one- or two-digit hour in 12-hour format.

hh The two-digit hour in 12-hour format. Single-digit values are
preceded by a zero.

H The one- or two-digit hour in 24-hour format.

HH The two-digit hour in 24-hour format. Single-digit values are
preceded by a zero.

m The one- or two-digit minute.

mm The two-digit minute. Single-digit values are preceded by a zero.

M The one- or two-digit month number.

MM The two-digit month number. Single-digit values are preceded by a
zero.

MMM The three-character month abbreviation.

MMMM The full month name.

t The one-letter AM/PM abbreviation (that is, AM is displayed as
"A").

tt The two-letter AM/PM abbreviation (that is, AM is displayed as

Chapter 2: A-Z Reference 169

"AM").

yy The last two digits of the year (that is, 1996 would be displayed as
"96").

yyyy The full year (that is, 1996 would be displayed as "1996").

The body text is defined by sub-strings contained within single quotes. For example,
to display the current date with the format "Today is: 04:22:31 Tuesday Mar 23,
1996", the format string is defined as follows:

CustomFormat
'Today is: 'hh':'m':'s dddd MMM dd', 'yyyy

To include a single quote in your body text, use two consecutive single quotes. For
example, to produce output that looks like: "Don't forget Mar 23, 1996", Cus-
tomFormat should be specified as follows:

CustomFormat
'Don''t forget' MMM dd',' yyyy

Note:Non format characters that are not delimited by single quotes will result in
unpredictable display by the DateTimePicker object.

Data Property
Applies To: ActiveXContainer, ActiveXControl, Animation, Bitmap,

BrowseBox, Button, ButtonEdit, Calendar, Circle, Clipboard,
ColorButton, Combo, ComboEx, CoolBand, CoolBar, Cursor,
DateTimePicker, Edit, Ellipse, FileBox, Font, Form, Grid, Group,
Icon, Image, ImageList, Label, List, ListView, Locator, Marker,
MDIClient, Menu, MenuBar, MenuItem, Metafile, MsgBox,
OCXClass, OLEClient, OLEServer, Poly, Printer, ProgressBar,
PropertyPage, PropertySheet, Rect, RichEdit, Root, Scroll,
Separator, SM, Spinner, Splitter, Static, StatusBar, StatusField,
SubForm, SysTrayItem, TabBar, TabBtn, TabButton, TabControl,
TCPSocket, Text, Timer, TipField, ToolBar, ToolButton,
ToolControl, TrackBar, TreeView, UpDown

Description

This property allows you to associate arbitrary data with an object. The value of the
Data property may be any APL array.

Chapter 2: A-Z Reference 170

DateTime Property
Applies To: DateTimePicker

Description

Specifies the value of date/time in a DateTimePicker.

The DateTime property represents the date and time value that is currently displayed
in a DateTimePicker object.

It is normally a 4-element integer vector containing the date (as an IDN), hour, min-
utes and seconds respectively.

However, if the checkbox shown in the object is unset (see HasCheckBox), the value
of DateTime will be ⍬ (zilde).

DateTimeChange Event 267
Applies To: DateTimePicker

Description

If enabled, this event is reported by a DateTimePicker object when the user changes
the DateTime value. This occurs when the user selects a new date from the drop-
down calendar, or increments or decrements a date time element using the spinner but-
tons, or edits a datetime element using the keyboard. In the latter case, the event may
not be generated until the input focus leaves the corresponding date time element.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 2-element vector as follows :

[1] Object ref or character vector

[2] Event 'DateTimeChange' or 267

[3] IDN integer

[4] Hour integer

[5] Minute integer

[6] Second integer

This event is reported for information only and cannot be disabled or modified in any
way.

Chapter 2: A-Z Reference 171

DateTimePicker Object
Purpose: The DateTimePicker object is an editable date/time field with an

optional drop-down Calendar.

Parents ActiveXControl, Form, Grid, Group, PropertyPage, SubForm,
ToolBar

Children Cursor, Font, Menu, MsgBox, TCPSocket, Timer

Properties Type, Posn, Size, Style, Coord, Align, Border, Active, Visible,
Event, DateTime, MinDate, MaxDate, CalendarCols, Today,
HasToday, CircleToday, WeekNumbers, MonthDelta,
HasCheckBox, FieldType, CustomFormat, Sizeable, Dragable,
FontObj, CursorObj, AutoConf, Data, Attach, EdgeStyle, Handle,
Hint, HintObj, Tip, TipObj, Translate, Accelerator, AcceptFiles,
KeepOnClose, Redraw, TabIndex, MethodList, ChildList,
EventList, PropList

Methods Detach, ChooseFont, GetTextSize, Animate, GetFocus, ShowSIP,
IDNToDate, DateToIDN

Events Close, Create, FontOK, FontCancel, DragDrop, Configure,
ContextMenu, DropFiles, DropObjects, Expose, Help, KeyPress,
GotFocus, LostFocus, MouseDown, MouseUp, MouseMove,
MouseDblClick, MouseEnter, MouseLeave, MouseWheel,
DateTimeChange, DropDown, CloseUp, Select

Description

The DateTimePicker object represents the built-in Windows date and time picker con-
trol. For most purposes, the DateTimePicker supersedes the use of Label, Edit and
Spinner objects for displaying and entering dates and times. Unlike the Edit and
Spinner objects, it is not possible for the user to enter an invalid date or time into a
DateTimePicker.

The Style property may be either 'Combo'(the default) or 'UpDown'. The former
provides a drop-down calendar that behaves in the same way as the Calendar object
and whose appearance and behaviour is controlled by a set of properties namely Cal-
endarCols, CircleToday, HasToday, MaxDate, MinDate, MonthDelta, Today and
WeekNumbers that are common to the Calendar. See the Calendar Object for further
details.

If Style is 'Combo', the Align property specifies the horizontal alignment of the
drop-down Calendar which may be 'Left'(the default) or 'Right'.

Chapter 2: A-Z Reference 172

If Style is 'UpDown', the DateTimePicker includes instead a pair of spinner buttons
that allow the user to increment and decrement values in the various sub-fields pro-
vided by the control.

Note that the Style property may only be set when the object is created.

The DateTime property represents the date and time value that is currently displayed
in the object. This is a 4-element vector containing the IDN, hour, minutes and sec-
onds respectively.

The FieldType property specifies one of a set of pre-defined date/time formats to be
used by the control. This is a character vector that may be empty (the default),
'Date', 'DateCentury', 'LongDate', 'Time'or 'Custom'. Specifying an
empty vector is the same as specifying 'Date'. Note that 'DateCentury'always
displays a 4-digit year, regardless of the user's Windows settings.

If FieldType is set to 'Custom', the format is defined by the
CustomFormat property. CustomFormat is a character vector that may contain a mix-
ture of date/time format elements and body text.

The HasCheckBox property is a Boolean value (default 0) that specifies whether or
not a checkbox is displayed in the object. This allows the user to specify whether or
not the date/time displayed in the DateTimePicker is applicable.

DateToIDN Method 264
Applies To: Calendar, DateTimePicker, Root

Description

This method is used to convert a date from ⎕TS format into an IDN suitable for use in
a Calendar object.

The argument to DateToIDN is a 3-element array as follows:

[1] Year Integer

[2] Month Integer

[3] Day Integer

DateToIDN will also accept a single enclosed argument containing these values. In
either case, if you specify more than 3 numbers, excess elements they will be ignored.

Chapter 2: A-Z Reference 173

Examples
F.C.DateToIDN 1998 9 11

36048
F.C.DateToIDN ⊂1998 9 11

36048
F.C.DateToIDN ⎕TS

36048
F.C.DateToIDN,⎕TS

36048

DblClickToggle Property
Applies To: CoolBar

Description

The DblClickToggle property specifies whether or not the user must single-click or
double-click to toggle a child CoolBand between its maximised or minimised state.

DblClickToggle is a single number with the value 0 (single-click toggles state) or 1
(double-click toggles state); the default is 0.

DDE Event 50
Applies To: Root

Description

If enabled, a DDE event is generated whenever a DDE message is received by Dya-
log APL. This will occur whenever a server notifies APL that the value of a shared
variable has changed, and whenever a client application requests data from APL. If
you have several shared variables, you can determine which of them has changed or
whose value has been requested using ⎕SVS.

This event only applies to the Root object ".", so to enable it you must execute one of
the following statements :

'.' ⎕WS 'Event' 50 1

or

'.' ⎕WS 'Event' 50 fn

or

'.' ⎕WS 'Event' 50 fn larg

Chapter 2: A-Z Reference 174

The first statement would cause ⎕DQ to terminate on receipt of a DDE event. The sec-
ond would cause it to call "fn" each time. The third would do likewise but the value
in "larg" would be supplied as its left argument.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function is a 2-element vector as follows :

[1] Object ref or character vector

[2] Event 'DDE' or 50

Note:Due to the nature of DDE "conversations" messages may be received when in
fact no change in the value of any shared variables has occurred. Your application
code must therefore be prepared to cater for this situation.

Decimals Property
Applies To: ButtonEdit, Edit, Label, Spinner

Description

This property specifies the number of decimal places to which a number is to be dis-
played in an Edit or Label object with FieldType'Numeric'. For an Edit object,
Decimals also specifies the maximum number of digits that the user may enter after a
decimal point.

The default value of decimals is ¯1 which allows any number of decimal places to be
entered.

Default Property
Applies To: Button, MsgBox

Description

This property determines which of a set of push buttons in a Form, SubForm or
MsgBox is the default button.

In a Form or SubForm, the Default Button will generate a Select event (30) when the
user presses the Enter key, even though the Default Button may not have the focus at
the time.

If however, the user explicitly shifts the focus to another Push Button, the automatic
selection of the Default Button is disabled and the Enter key applies to the Button
with the focus.

Chapter 2: A-Z Reference 175

For a Button, the Default property has the value 1 or 0. As only one Button can be
the Default Button, setting Default to 1 for a particular Button automatically sets
Default to 0 for all others with the same parent.

In a MsgBox, Default specifies which button initially has the focus. It has the value
1, 2 or 3 corresponding to the three buttons that can be defined. See Btns property for
further details.

DefaultColors Property
Applies To: ColorButton

Description

The DefaultColors property is a nested matrix which specifies the RGB values of the
colours shown in the colour selection drop-down displayed by a ColorButton object.

The shape of DefaultColors determines the number of rows and columns in the colour
selection drop-down.

Each element of DefaultColors is a 3-element integer vector specifying an RGB
colour value.

DelCol Method 155
Applies To: Grid

Description

This method is used to delete a specified column from a Grid object.

The argument to DelCol is a 1 or 2-element vector as follows:

[1] Column number number of the column (integer) to delete

[2] Undo flag 0 or 1 (optional; default 0)

If the Undo flag 1, the column may subsequently be restored by invoking the Undo
method. If the Undo flag is omitted or is 0, the operation may not be undone.

Chapter 2: A-Z Reference 176

DelComment Method 221
Applies To: Grid

Description

This method is used to delete a comment from a Grid.

The argument to DelComment is a 2 array as follows or ⍬:

[1] Row integer

[2] Column integer

For example, the following expression removes the comment associated with the cell
at row 2, column 1.

F.C.DelComment 2 1

Note that to delete a comment associated with a row or column title, the appropriate
element in the argument should be ¯1.

If the argument is ⍬, all comments are deleted.

DeleteChildren Method 311
Applies To: TreeView

Description

This method is used to delete child items from a parent item in a TreeView object.

The argument to DeleteChildren is a scalar or 1 element array as follows:

[1] Item number Integer.

Item number specifies the index of the parent item fromwhich the child items are to
be removed.

The result is an integer that indicates the number of children that have been removed
from the parent item.

Chapter 2: A-Z Reference 177

DeleteItems Method 309
Applies To: TreeView

Description

This method is used to delete items from a TreeView object.

The argument to DeleteItems is a 2-element array as follows:

[1] Item number Integer.

[2] Number of Items Integer.

Item number specifies the index of the first item to be removed.

Number of items specifies the number of items to be removed and refers to those
items at the same level in the TreeView hierarchy as the Item number. Number of
items is optional and defaults to 1.

Note that any children of these items will also be removed.

The result is an integer that indicates the total number of items, including children,
that have been removed from the TreeView.

DeleteTypeLib Method 521
Applies To: Root

Description

The DeleteTypeLib method removes a loaded Type Library from the workspace.

The argument to DeleteTypeLib is as follows:

[1] TypeLib character vector

The Type Library may be identified by its name or by its class id.

The result is 0, 1 or ¯1.

If successful, the specified Type Library, and all dependant Type Libraries not ref-
erenced by any other currently loaded Type Libraries, are removed from the active
workspace. The result is 1.

If the specified Type Library is in use, no action is taken and the result is 0.

Chapter 2: A-Z Reference 178

If the argument is not the name or CLSID of a loaded Type Library, no action is taken
and the result is ¯1.

DelRow Method 154
Applies To: Grid

Description

This method is used to delete a specified row from a Grid object.

The argument to DelRow is a 1 or 2-element array as follows:

[1] Row number number of the row (integer) to delete

[2] Undo flag 0 or 1 (optional; default 0)

If the Undo flag is 1, the column may subsequently be restored by invoking the
Undo method. If the Undo flag is omitted or is 0, the operation may not be undone.

Depth Property
Applies To: TreeView

Description

The Depth property specifies the structure of the items in a TreeView object. It is
either a scalar 0 or an integer vector of the same length as the Items property.

A value of 0 indicates that the corresponding item is a top-level item. A value of 1
indicates that the corresponding item is a child of the most recent item whose Depth
is 0; a value of 2 indicates that the corresponding item is a child of the most recent
item whose Depth is 1, and so forth. For example:

Chapter 2: A-Z Reference 179

AIRPORTS DEPTH Description

Europe 0 Top-level (root) item

UK 1 1st sub-item of Europe

London Heathrow 2 1st sub-item of UK

London Gatwick 2 2nd sub-item of UK

Manchester 2 3rd sub-item of UK

France 1 2nd sub-item of Europe

Paris CDG 2 1st sub-item of France

Americas 0 Top-level (root) item

USA 1 1st sub-item of N.America

California 2 1st sub-item of USA

Los Angeles 3 1st sub-item of California

San Francisco 3 2nd sub-item of California

East Coast 2 2nd sub-item of USA

New York 3 1st sub-item of East Coast

Kennedy 4 1st sub-item of NY

La Guardia 4 2nd sub-item of NY

Chapter 2: A-Z Reference 180

'F'⎕WC'FORM' 'International Airports'

'F.TV'⎕WC'TreeView'AIRPORTS(0 0)(100 100)
('Depth'DEPTH)

Detach Method 270
Applies To: ActiveXContainer, ActiveXControl, Animation, Bitmap,

BrowseBox, Button, ButtonEdit, Calendar, Circle, Clipboard,
ColorButton, Combo, ComboEx, CoolBand, CoolBar, Cursor,
DateTimePicker, Edit, Ellipse, FileBox, Font, Form, Grid, Group,
Icon, Image, ImageList, Label, List, ListView, Locator, Marker,
MDIClient, Menu, MenuBar, MenuItem, Metafile, MsgBox,
OCXClass, OLEClient, OLEServer, Poly, Printer, ProgressBar,
PropertyPage, PropertySheet, Rect, RichEdit, Scroll, Separator, SM,
Spinner, Splitter, Static, StatusBar, StatusField, SubForm,
SysTrayItem, TabBar, TabBtn, TabButton, TabControl, TCPSocket,
Text, Timer, TipField, ToolBar, ToolButton, ToolControl,
TrackBar, TreeView, UpDown

Description

This method is used to detach the GUI component from an object without losing the
functions, variables and sub-namespaces that it may contain.

Chapter 2: A-Z Reference 181

The Detach method is niladic.

The effect of this method is to remove the GUI component associated with the named
object, leaving behind a plain namespace of the same name. All non-GUI child
objects are retained. GUI child objects are either destroyed, or similarly converted to
plain namespaces depending upon the values of their KeepOnClose properties.

DevCaps Property
Applies To: Printer, Root

Description

This property reports the device capabilities of the screen or printer. It is a 3-element
nested vector as follows :

[1] Height and Width:2-element numeric vector of device in pixels

[2] Height and Width:2-element numeric vector of device in mm

[3] Number of colours:integer scalar

This property is useful if you want to make objects of a specific physical size. For
example, to draw a 10mm square in a Form'F' at (5,5):

Size ← 10 × ⊃÷/2↑'.' ⎕WG 'DevCaps'
'F.R' ⎕WC 'Rect' (5 5) Size ('Coord' 'Pixel')

Note that new elements may be added to DevCaps in a future release.

Please note that the physical size reported for the screen is typically only a nominal
size, because, if you use a generic video driver, Windows has no way to tell that you
have a 14", 15" or 17" screen attached to your computer.

Directory Property
Applies To: FileBox

Description

The Directory property contains a simple character vector which specifies the initial
directory fromwhich a list of suitable files is displayed.

If, whilst interacting with the FileBox, the user changes directory and exits by press-
ing "OK" or by closing the FileBox, the value of the Directory property is updated
accordingly.

Chapter 2: A-Z Reference 182

DisplayChange Event 137
Applies To: Root

Description

If enabled, this event is reported when the user changes the screen resolution or
number of colours. The event is reported for information only; you cannot prevent
the change from occurring.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 5-element vector as follows :

[1] Object ref or character vector

[2] Event 'DisplayChange' or 137

[3] Height Integer. Number of pixels in the y-direction

[4] Width Integer. Number of pixels in the x-direction

[5] Number of colours Integer.

Divider Property
Applies To: ToolControl

Description

The Divider property controls the presence or absence of a recessed line drawn
above, below, to the left of, or to the right of a ToolControl object.

Divider is a single number with the value 0 (dividing line is not drawn) or 1 (a divid-
ing line is drawn); the default is 1.

The pictures below illustrates a ToolControl drawn with and without a divider.

Chapter 2: A-Z Reference 183

Dockable Property
Applies To: CoolBand, Form, SubForm, ToolControl

Description

The Dockable property specifies whether or not an object may be docked or
undocked.

Dockable is a character vector containing 'Never' (the default), 'Always' or
'Disabled'.

If Dockable is 'Never', the object may not be docked or undocked by the user, and
the docking menu items are not present in the object's context menu. This is the
default.

If Dockable is 'Always', the object may be docked or undocked by the user, and
the docking menu items are present in the object's context menu.

If Dockable is 'Disabled', the object may not currently be docked or undocked
by the user, but the docking menu items are present in the object's context menu.

Note that by default, the user may switch between Dockable 'Always'and
'Disabled' by toggling the Dockablemenu item. If you want to exercise full con-
trol over this property, you may implement your own context menu (see Con-
textMenu Event)

Chapter 2: A-Z Reference 184

DockAccept Event 483
Applies To: CoolBand, CoolBar, Form, SubForm, ToolControl

Description

If enabled, this event is reported by a host object just before it accepts a client object
docking operation. This event is reported (by the host) immediately after the Dock-
Request is reported (by the client).

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 7-element vector as follows :

[1] Object ref or character vector

[2] Event 'DockAccept' or 483

[3] Client Object ref or character vector

[4] Edge character vector

[5] y-position number

[6] x-position number

[7] Outline rectangle 4-element nested

Elements 4-7 of this event message are the same as those reported by DockMove, and
the effect of a callback function is identical. See DockMove for further information.

DockCancel Event 485
Applies To: CoolBand, CoolBar, Form, SubForm, ToolControl

Description

If enabled, this event is reported by a client object when the user aborts a docking
operation by pressing Escape.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 2-element vector as follows :

[1] Object ref or character vector

[2] Event 'DockCancel' or 485

This event is reported for information only and cannot be cancelled or inhibited in
any way.

Chapter 2: A-Z Reference 185

DockChildren Property
Applies To: CoolBar, Form, SubForm

Description

The DockChildren property specifies the names of client objects that may be docked
in a host object.

DockChildren may be a single ref or simple character scalar or vector, or a vector of
refs or character vectors. Each item represents an object that may be docked. Notice
that if you use a name, you must specify the simple name of the object, excluding any
part of its full pathname that refers to a parent; i.e. the specified names must not con-
tain any leading pathname information.

If the name of, or ref to, a dockable object occurs in the DockChildren property, the
host object will generate DockMove events when the client is dragged over it, and
will generate a DockAccept event when a docking operation takes place.

If the name of , or ref to, the client object is not present in its DockChildren property,
the object will not respond in any way as the client is dragged over it.

The following example shows the creation of 3 dockable forms, all of which are dock-
able in a host form called h1.

The first, c1, is a totally independent Form.When docked in h1, it will become a
SubForm h1.c1. When undocked, it will revert to an independent Form c1.

The second, c2, is created initially as a child of h1 and will therefore be displayed
above it in the window stacking order. When docked it will become a SubForm
h1.c2. When undocked, it will revert back to a dependant Form h1.c2. In all
cases, it appears on top of h1.

The third, c3, is created initially as a child of another Form, h2. When docked (in
h1) it will become a SubForm h1.c3. When undocked, it will become a dependant
Form h1.c3, and will therefore appear above h1 in the stacking order.

'h1'⎕WC'Form' 'Host1'
'h2'⎕WC'Form' 'Host2'

'c1' ⎕WC 'Form' 'Client 1' ('Dockable' 'Always')
'h1.c2' ⎕WC 'Form' 'Client 2' ('Dockable' 'Always')
'h2.c3' ⎕WC 'Form' 'Client 3' ('Dockable' 'Always')

h1.DockChildren←'c1' 'c2' 'c3'

Chapter 2: A-Z Reference 186

Docked Property
Applies To: Form, SubForm

Description

The Docked property is a read-only property that indicates whether or not an object
is currently docked.

Docked is a single number with the value 0 (is not docked) or 1 (is docked).

DockEnd Event 484
Applies To: CoolBand, CoolBar, Form, SubForm, ToolControl

Description

If enabled, this event is reported by a client object after it has been successfully
docked in a host object.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 2-element vector as follows :

[1] Object ref or character vector

[2] Event 'DockEnd' or 484

This event is reported for information only and cannot be cancelled or inhibited in
any way.

Chapter 2: A-Z Reference 187

DockMove Event 481
Applies To: CoolBand, CoolBar, Form, SubForm, ToolControl

Description

If enabled, this event is reported by a host object when a dockable object (the client)
is dragged over it. The event will only be reported if the name of the client object is
included in the list of objects that the host object will accept, which is defined by its
DockChildren property.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 7-element vector as follows :

[1] Object ref or character vector

[2] Event 'DockMove' or 481

[3] Client Object ref or character vector

[4] Edge character vector

[5] y-position number

[6] x-position number

[7] Outline rectangle (see below)

The 4th element of the event message Edge is a character vector that indicates along
which edge of the host object the client object will be docked if the mouse button is
released. It is either 'Top', 'Bottom', 'Left', 'Right' or 'None'. The latter
indicates that the object will not be docked. An object will dock only if the mouse
pointer is inside, and sufficiently near to an edge of, the host.

The 5th and 6th elements of the event message report the position of the mouse
pointer in the host object.

The 7th element of the event message is a 4-element nested vector containing the y-
position, x-position, height and width of a rectangle. If Edge is 'None', this is the
bounding rectangle of the client object. Otherwise, the rectangle describes a docking
zone in the host that the client object will occupy when the mouse button is released.

If a callback function returns 0, the system displays the bounding rectangle and not a
docking zone, and the docking operation is inhibited. You could use this mechanism
to prohibit docking along one or more edges, whilst allowing it along others.

A callback function may modify the event message to cause a different sized docking
zone to be displayed, or to force docking along a particular edge.

The DockMove event is generated repeatedly as the docking object is dragged.

Chapter 2: A-Z Reference 188

DockRequest Event 482
Applies To: CoolBand, CoolBar, Form, SubForm, ToolControl

Description

If enabled, this event is reported by a client object just before it is docked in a host
object, when the user releases the mouse button.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 7-element vector as follows :

[1] Object ref or character vector

[2] Event 'DockRequest' or 482

[3] Host Object ref or character vector

[4] Edge character vector

[5] y-position number

[6] x-position number

[7] Outline rectangle 4-element nested

Elements 4-7 of this event message are the same as those reported by DockMove, and
the effect of a callback function is identical. See DockMove for further information.

DockShowCaption Property
Applies To: Form, SubForm

Description

The DockShowCaption property specifies whether or not a Form displays a title bar
when it is docked as a SubForm.

DockShowCaption is a single number with the value 0 or 1 (the default).

The DockShowCaption property may be toggled on and off by the user from the
object's context menu.

The first picture below illustrates a Form, docked as a SubForm, whose Dock-
ShowCaption property is 1, but is about to be set to 0.

Chapter 2: A-Z Reference 189

The next picture shows the same docked Form with DockShowCaption set to 0.

Chapter 2: A-Z Reference 190

DockStart Event 480
Applies To: CoolBand, CoolBar, Form, SubForm, ToolControl

Description

If enabled, this event is reported by a dockable object (one whose Dockable property
is set to 1) when the user starts to drag it using the mouse.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 2-element vector as follows :

[1] Object ref or character vector

[2] Event 'DockStart' or 480

A callback function may prevent the docking operation from starting by returning 0.

Dragable Property
Applies To: ActiveXControl, Animation, Button, ButtonEdit, Calendar, Circle,

ColorButton, Combo, ComboEx, DateTimePicker, Edit, Ellipse,
Grid, Group, Image, Label, List, ListView, Marker, Poly,
ProgressBar, Rect, RichEdit, Scroll, SM, Spinner, Static,
StatusField, Text, TrackBar, TreeView, UpDown

Description

This property determines whether or not an object may be the subject of a "drag and
drop" operation. It is a single number with the value 0, 1 or 2. A value of 0 (which is
the default) means that the object may not be drag/dropped. A value of 1 means that
the object may be drag/dropped and that during the "drag" operation, a box rep-
resenting the bounding rectangle around the object is displayed on the screen. A
value of 2 means that the outline of the object is displayed as the object is dragged,
or, if the object is an Image with a Picture property containing the name of an Icon
object, the icon itself is displayed as it is dragged. For rectangular non-graphical
objects, values of 1 and 2 are equivalent.

If an object is Dragable, the user may drag it by positioning the mouse pointer within
the object, depressing the left mouse button, then moving the mouse with the button
held down. During the drag operation, the mouse pointer is automatically changed to
a "drag" symbol. The object is "dropped" by releasing the left mouse button. The
effect depends upon where it is dropped, and on the action associated with the Drag-
Drop event for the object under the mouse pointer (if any).

Chapter 2: A-Z Reference 191

If there is no object under the mouse pointer, the "drag and drop" operation is
ignored. Otherwise, the object under the mouse pointer generates a DragDrop event.

If the object under the mouse pointer is the parent of the object that has been
"dragged and dropped", the default action is for the system to move that object to the
new location within its parent. If you wish to allow your user to freely move an
object within its parent Form or Group, simply set its Dragable property to 1; the sys-
tem will take care of the rest. If you want to allow the user to move an object, but you
want to know about it when it happens, you can associate a callback function to the
DragDrop event that queries the new position. To permit the operation to complete,
the callback function should either not return a result or it should return something
other than a scalar 0. To selectively disable movement, your callback function should
return a scalar 0 in circumstances when the "drop" is not to be permitted.

If the object under the mouse pointer is not the parent of the object being dragged,
the default action is for the system to ignore the operation. However, by enabling the
DragDrop event, your application can of course take whatever action is appropriate,
including perhaps moving the dragged object to a new parent.

Note that a Dragable object does not generate a Configure (31) event when it is
dragged and dropped.

DragDrop Event 11
Applies To: ActiveXControl, Animation, Button, ButtonEdit, Calendar, Circle,

ColorButton, Combo, ComboEx, CoolBar, DateTimePicker, Edit,
Ellipse, Form, Grid, Group, Image, Label, List, ListView, Marker,
MDIClient, Poly, ProgressBar, PropertyPage, Rect, RichEdit, Scroll,
SM, Spinner, Static, StatusBar, SubForm, TabBar, Text, ToolBar,
ToolControl, TrackBar, TreeView, UpDown

Description

If enabled, this event is reported when the user drops one object over another. It is
generated by the object which is being dropped on.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 7-element vector as follows :

Chapter 2: A-Z Reference 192

[1] Object ref or character vector

[2] Event 'DragDrop' or 11

[3] Object name character vector (name of dragged object)

[4] Y y-position of mouse pointer

[5] X x-position of mouse pointer

[6] H height of dragged object

[7] W width of dragged object

[8] Shift State
numeric scalar containing the sum of the values
associated with the Shift(1), Ctrl(2) and Alt(4) keys
when the object was dropped.

Y, H, X and W are reported relative to the object being dropped on.

DragItems Property
Applies To: ListView

Description

The DragItems property is boolean and specifies whether or not the items in a List-
View object may be drag/dropped by the user. Its default value is 1.

Chapter 2: A-Z Reference 193

DrawMode Property
Applies To: Circle, Ellipse, Marker, Poly, Rect, Text

Description

The DrawMode property provides direct control over the low-level drawing oper-
ation performed by graphical objects.

The DrawMode property specifies the current foreground mix mode. The Windows
GDI uses the foreground mix mode to combine pens and interiors of filled objects
with the colours already on the screen. The foreground mix mode defines how
colours from the brush or pen and the colours in the existing image are to be com-
bined.

DrawMode affects every drawing operation performed by Dyalog APL and not just
the initial drawing operation when the object is created. Many of the drawing modes
are additive (the result depends not just on what is being drawn, but on what is
already there) and the effects may therefore vary. For this reason, DrawMode should
normally be used only with un-named graphical objects.

You could use DrawMode to move or animate graphical objects in circumstances
where the standard Dyalog APL behaviour was not ideal.

Chapter 2: A-Z Reference 194

DrawMode is an integer with one of the following values:

Value Name Resulting Pixel Colour

1 R2_BLACK Pixel is always 0.

2 R2_NOTMERGEPEN Pixel is the inverse of the R2_
MERGEPEN colour.

3 R2_MASKNOTPEN
Pixel is a combination of the colours
common to both the screen and the
inverse of the pen.

4 R2_NOTCOPYPEN Pixel is the inverse of the pen colour.

5 R2_MASKPENNOT
Pixel is a combination of the colours
common to both the pen and the inverse
of the screen.

6 R2_NOT Pixel is the inverse of the screen colour.

7 R2_XORPEN
Pixel is a combination of the colours in
the pen and in the screen, but not in
both.

8 R2_NOTMASKPEN Pixel is the inverse of the R2_
MASKPEN colour.

9 R2_MASKPEN Pixel is a combination of the colours
common to both the pen and the screen.

10 R2_NOTXORPEN Pixel is the inverse of the R2_XORPEN
colour.

11 R2_NOP Pixel remains unchanged.

12 R2_MERGENOTPEN Pixel is a combination of the screen
colour and the inverse of the pen colour.

13 R2_COPYPEN Pixel is the pen colour.

14 R2_MERGEPENNOT Pixel is a combination of the pen colour
and the inverse of the screen colour.

15 R2_MERGEPEN Pixel is a combination of the pen colour
and the screen colour.

16 R2_WHITE Pixel is always 1.

Chapter 2: A-Z Reference 195

DropDown Event 45
Applies To: Button, ButtonEdit, ColorButton, Combo, ComboEx,

DateTimePicker, Menu

Description

If enabled, this event is reported when the user clicks the drop-down button in a
Combo, ComboEx, ColorButton, DateTimePicker or object, just before the drop-
down list, colour selection, calendar or -menu is displayed.

For a Button this event only applies if the Style of the Button is Split. For such a
Button and for the ButtonEdit object there is no default processsing for the event and
it is the responsibility of the programmer to take appropriate action in a call-back
function.

For a DateTimePicker this event only applies if the Style of the DateTimePicker is
'Combo'.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 2-element vector as follows :

[1] Object ref or character vector

[2] Event 'DropDown' or 45

This event is reported for information only and cannot be disabled or modified in any
way.

Chapter 2: A-Z Reference 196

DropFiles Event 450
Applies To: ActiveXControl, Animation, Button, ButtonEdit, Calendar,

ColorButton, Combo, ComboEx, CoolBar, DateTimePicker, Edit,
Form, Grid, Group, Label, List, ListView, MDIClient, ProgressBar,
PropertyPage, RichEdit, Scroll, Spinner, Static, StatusBar, SubForm,
TabBar, ToolBar, ToolControl, TrackBar, TreeView, UpDown

Description

If enabled, this event is reported when the user drags a file icon or a set of file icons
and drops them onto the object. The system takes no action other than to report the
event.

Note that the event is only reported if AcceptFiles is set to 1.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 5-element vector as follows :

[1] Object ref or character vector

[2] Event 'DropFiles' or 450

[3] Files Vector of character vectors containing the file names.

[4] Item number

Integer. The index of the item within the object onto
which the file(s) was dropped. Applies only to objects
that have an Items property such as List, ListView and
TreeView.

[5] Shift state Integer. Sum of 1=shift key, 2=Ctrl key, 4=Alt key

Chapter 2: A-Z Reference 197

DropObjects Event 455
Applies To: ActiveXControl, Animation, Button, ButtonEdit, Calendar,

ColorButton, Combo, ComboEx, CoolBar, DateTimePicker, Edit,
Form, Grid, Group, Label, List, ListView, MDIClient, ProgressBar,
PropertyPage, RichEdit, Scroll, Spinner, Static, StatusBar,
StatusField, SubForm, TabBar, TabBtn, ToolBar, ToolControl,
TrackBar, TreeView, UpDown

Description

If enabled, this event is reported when the user drags an object icon or a set of object
icons from the Explorer Tool or Find Objects Tool (which are part of the Dyalog APL
Session) and drops them onto the object. The system takes no action other than to
report the event. You can use this event to extend drag-drop functionality in your Ses-
sion. For example, you could perform an operation by drag-dropping an APL object
icon onto a Button in the Session toolbar.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 4-element vector as follows :

[1] Object ref or character vector

[2] Event 'DropObjects' or 455

[3] Objects Vector of character vectors containing the object names.

[4] Item number

Integer. The index of the item within the object onto
which the file(s) was dropped. Applies only to objects
that have an Items property such as List, ListView and
TreeView. Otherwise this value is -1.

[5] Shift state Integer. Sum of 1=Shift key, 2=Ctrl key, 4=Alt key

Chapter 2: A-Z Reference 198

Duplex Property
Applies To: Printer

Description

Specifies whether pages are printed on separate sheets or back-to-back.

Duplex is a character vector which is either empty or contains 'Simplex',
'Vertical', or 'Horizontal'.

The default value for Duplex is derived from the current printer setting and
'Vertical' and 'Horizontal' are only effective if the printer supports a
duplex capability.

DuplicateColumn Method 178
Applies To: Grid

Description

This method is used to duplicate a column in a Grid object.

The argument to DuplicateColumn is a 2, 3, 4 or 5-element vector as follows:

[1] Source Column number number of the column (integer) to be
duplicated

[2] Target Column number new column number (integer)

[3] Comment flag 0 or 1 (optional, default 1)

[4] Lock flag 0 or 1 (optional, default 1)

[5] Undo flag 0 or 1 (optional; default 0)

If the Comment flag is 1 (the default), any Comments associated with cells in the
source column are duplicated in the target column.

If the Lock flag is 1 (the default), the lock state of the column is duplicated; other-
wise, the new column is not locked.

If the Undo flag is 1, the column may subsequently be restored by invoking the
Undo method. If this element is omitted or is 0, the operation may not be undone.

Chapter 2: A-Z Reference 199

DuplicateRow Method 177
Applies To: Grid

Description

This method is used to duplicate a row in a Grid object.

The argument to DuplicateRow is a 2, 3, 4 or 5-element vector as follows:

[1] Source Row number number of the row (integer) to be duplicated

[2] Target Row number new row number (integer)

[3] Comment flag 0 or 1 (optional, default 1)

[4] Lock flag 0 or 1 (optional, default 1)

[5] Undo flag 0 or 1 (optional; default 0)

If the Comment flag is 1 (the default), any Comments associated with cells in the
source row are duplicated in the target row.

If the Lock flag is 1 (the default), the lock state of the row is duplicated; otherwise,
the new row is not locked.

If the Undo flag is 1, the row may subsequently be restored by invoking the Undo
method. If this element is omitted or is 0, the operation may not be undone.

DyalogCustomMessage1 Event 95
Applies To: Form

Description

This event allows external applications and dynamic link libraries to insert events
into the Dyalog APL/W message queue.

DyalogCustomMessage1 may be invoked from a C program as follows:

msg=RegisterWindowMessage("DyalogCustomMessage1");
SendMessage(hWnd,msg,wParam,lParam);

where hWnd is the window handle of the object in the Dyalog APLWorkspace. If
the object is a Form, this may be obtained using FindWindow(). If not, hwnd may be
passed to the external process as an argument to a function.

Chapter 2: A-Z Reference 200

The parameters wParam and lParam are reported as numeric arguments to the APL
callback function.

NOTE: It is not possible to pass pointers to data in wParam or lParam.When the APL
callback executes the pointers may not be valid.

If a callback function is attached to the event, the callback function will be run when
the event reaches the top of the queue.

This event is reported for information alone. You may not disable or nullify the event
by setting the action code for the event to ¯1or by returning 0 from a callback func-
tion.

The result of a callback function is not returned to the external application.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 4-element vector as follows :

[1] Object ref or character vector

[2] Event 'DyalogCustomMessage1' or 95

[3] wparam integer

[4] lparam integer

EdgeStyle Property
Applies To: ActiveXControl, Animation, Button, ButtonEdit, Calendar,

ColorButton, Combo, ComboEx, DateTimePicker, Edit, FileBox,
Form, Grid, Group, Image, Label, List, ListView, MDIClient,
Menu, MenuBar, MenuItem, MsgBox, Printer, ProgressBar,
PropertyPage, PropertySheet, Rect, RichEdit, Root, Scroll,
Separator, SM, Spinner, Static, StatusBar, StatusField, SubForm,
TabBtn, ToolBar, TrackBar, TreeView, UpDown

Description

Note that EdgeStyle is not honoured for objects which have a natural built-in 3-
dimensional appearance.

This property is used to give a 3-dimensional appearance to screen objects. This is
achieved by drawing the object with a grey or white background colour and by draw-
ing a border around it using various combinations of black, white and dark grey
lines. Note that this border is drawn outside a control but inside a Form or SubForm.

Chapter 2: A-Z Reference 201

The value of the EdgeStyle property is a character vector chosen from the following :

'None'
Object is drawn with no 3-dimensional effects and the
EdgeStyle properties of its children are ignored (treated as
None).

'Plinth'
Object is drawn with a light shadow along its top and left
edges and a dark shadow along its bottom and right edges.
This gives the illusion of a raised effect.

'Recess'
Object is drawn with a dark shadow along its top and left
edges and a light shadow along its bottom and right edges.
This gives the illusion of a sunken effect.

'Groove'
Object is drawn with a border that has the appearance of a
groove.

'Ridge'
Object is drawn with a border that has the appearance of a
ridge.

'Shadow'
Object is drawn with a dark border line along its top and left
edges.

'Default'
Object itself is drawn with no 3-dimensional border, but the
values of the EdgeStyle properties of its children are observed.

'Dialog'
Used in conjunction with ('Border' 2), this gives a Form
the appearance of a standard 3-dimensional dialog box. This
setting applies only to a Form or a SubForm

For the Root object, the EdgeStyle property may be 'None' or 'Default'. If
EdgeStyle is 'None', screen objects are drawn without 3-dimensional effects of any
kind and the value of their EdgeStyle property is ignored. If EdgeStyle is
'Default', all controls are drawn using their default EdgeStyle properties.

Note that MsgBox, FileBox and the set-up dialog box associated with the
Printer object are all drawn with 3-dimensional effects regardless of the value of
EdgeStyle on Root. These objects do not have their own EdgeStyle properties.

If you set EdgeStyle to 'None' on the Root object, all your objects will (by default)
be drawn without 3-dimensional effects.

Chapter 2: A-Z Reference 202

Edit Object
Purpose: Allows user to enter or edit data.

Parents ActiveXControl, CoolBand, Form, Grid, Group, PropertyPage,
SubForm, ToolBar, ToolControl

Children Circle, Cursor, Ellipse, Font, Marker, Poly, Rect, Text, Timer

Properties Type, Text, Posn, Size, Style, Coord, Border, Justify, Active,
Visible, Event, VScroll, HScroll, SelText, Sizeable, Dragable,
FontObj, FCol, BCol, CursorObj, AutoConf, Data, Attach,
TextSize, EdgeStyle, Handle, Hint, HintObj, Tip, TipObj,
FieldType, MaxLength, Decimals, Password, ValidIfEmpty,
ReadOnly, FormatString, Changed, Value, Translate, Accelerator,
AcceptFiles, WantsReturn, KeepOnClose, Redraw, TabIndex, Cue,
ShowCueWhenFocused, MethodList, ChildList, EventList,
PropList

Methods Detach, GetTextSize, Animate, GetFocus, ShowSIP, ChooseFont

Events Close, Create, FontOK, FontCancel, DragDrop, Configure,
ContextMenu, DropFiles, DropObjects, Expose, Help, KeyPress,
GotFocus, LostFocus, MouseDown, MouseUp, MouseMove,
MouseDblClick, MouseEnter, MouseLeave, MouseWheel, Select,
BadValue, Change, KeyError

Description

The value of the Style property, which may be 'Single' or 'Multi', determines
whether the object presents a single-line data entry field or an area for viewing and
editing a large block of text.

Chapter 2: A-Z Reference 203

Single-Line Edit
The FieldType property (which applies only to a single-line Edit object) is either an
empty vector (the default) or specifies the type of the field as reflected by its
Value.property. If FieldType is empty, the Value of the field may be a number or a
character vector, according to the contents defined by its Text property (this is
always a character vector).

If FieldType is 'Char', the Value of the field is forced to be a character vector, even
if the contents defined by its Text property is entirely numeric.

If FieldType is 'Numeric', 'LongNumeric', 'Currency', 'Date',
'LongDate', or 'Time' the Value contains a number. For fields of these types,
basic validation is provided during user input. The field is revalidated when the user
attempts to "leave" it and at this point the object will generate a BadValue event if its
contents are inconsistent with its FieldType.

Note that when an Edit object is used as the Input property of a Grid, it is the Value
of the Edit object (and not its Text property) that is used to update the Values prop-
erty (i.e. the contents of) the Grid when the user moves away from the cell.

The MaxLength property defines the maximum number of characters that the user
may enter into the object.

The ValidIfEmpty property may be 0 (the default) or 1 and specifies whether or not
the Edit field is deemed to be valid if it is empty.

The Password property specifies the character that is displayed in response to the user
typing a character. Normally, Password is empty (the default) and the object displays
the character that was entered. However, if you set Password to (say) an asterisk (*)
this symbol will be displayed instead of the characters the user has entered. Note how-
ever that the Text and Value properties will reflect what the user typed.

The HScroll property determines whether or not the data may be scrolled. If HScroll
is 0, the data is not scrollable, and the user cannot enter more characters once the field
is full. If HScroll is ¯1 or ¯2 the field is scrollable, and there is no limit on the
number of characters that can be entered. In neither case however is a horizontal
scrollbar provided. HScroll may only be set when the object is created and may not
subsequently be changed.

Multi-Line Edit
If the Style is 'Multi', Text may be a simple character vector, a matrix, or a vector
of vectors. If you specify Text as a matrix, "new-line" characters are automatically
added at the end of each row. Similarly, if you specify Text as a vector of vectors,
"new-line" characters are added after each vector. The user may insert a "new-line"
character in the text by pressing Ctrl-Enter.

Chapter 2: A-Z Reference 204

If you specify (assign) Text as a vector or vector of vectors, it will be returned as a vec-
tor of vectors when you query it. Otherwise, it will be returned as a matrix. "New-
line" characters are not returned.

The Justify property determines whether the text in a multi-line Edit object is
'Left', 'Right', or 'Centre' justified. Setting Justify to 'Centre' or
'Right' also forces word-wrapping and disables horizontal scrolling, whatever the
value of HScroll. Note that they keyword 'Centre'may also be spelled
'Center'. Justify may only be specified when the object is created using ⎕WC.

If Justify is 'Left', the HScroll property determines whether or not text may be
scrolled horizontally. If HScroll is set to ¯2, each individual line may be any length,
but the object does not have a horizontal scrollbar. Sideways scrolling is achieved
using the cursor keys, or by typing. If HScroll is ¯1, each individual line may be of
any length and the object will have a horizontal scrollbar. If HScroll is 0, lines are
automatically "word-wrapped" at the right edge of the object. This means that the
number of lines displayed may be greater than the number of lines implied by the
rows of the matrix or the number of vectors supplied. In particular, if you specify a sin-
gle long vector, it will be broken up into lines for you on the display, but still
returned as a single vector by ⎕WG.

The VScroll property determines whether or not data may be scrolled vertically and
whether or not the object has a vertical scrollbar. A value of 0 inhibits scrolling; ¯2
means scrollable, without a scrollbar; ¯1means scrollable with a scrollbar. VScroll
may only be set when the object is created and may not subsequently be changed.

The setting of Justify forces word-wrapping.

The SelText property identifies the portion of the text that is selected. It may be used
to pre-select (and highlight) a part of the text, or to report the part of the text selected
by the user. SelText is a 2-element integer vector which specifies the start and end of
the selected area. Its structure depends upon the nature of the data specified by Text.
See the description of SelText for details.

If the user changes any data in the field and attempts to change focus to another
object, the Edit object will generate a Change event. You can use this to validate the
new data in the field.

Chapter 2: A-Z Reference 205

EditImage Property
Applies To: ComboEx

Description

Specifies whether or not the edit control portion of the ComboEx displays an image
for selected items.

EditImage is a single number with the value 0 or 1 (the default). If EditImage is 1, the
image associated with the selected item is displayed in the edit control, portion of the
ComboEx object, to the left of the text. If EditImage is 0, only the item text is dis-
played in the edit control.

EditImageIndent Property
Applies To: ComboEx

Description

Specifies whether or not the indents associated with items in a ComboEx object are
honoured in the edit control portion of the ComboEx.

EditImageIndent is a single number with the value 0 or 1 (the default).

If EditImageIndent is 1, the selected item which is displayed in the edit control por-
tion of the ComboEx object is indented in the same way as when it is displayed in
the dropdown portion of the object. The amount of indentation is specified by the
Indents property.

If EditImageIndent is 0, the item displayed in the edit control portion of the Com-
boEx is not indented.

EditLabels Property
Applies To: ListView, TreeView

Description

The EditLabels property is boolean and specifies whether or not the labels (specified
by the Items property) in a ListView or TreeView object may be edited by the user.
Its default value is 0 (editing is not allowed).

Chapter 2: A-Z Reference 206

If EditLabels is 1, the user begins editing by clicking the label of the item that has the
focus. This causes a pop-up edit box to appear around the item and allows the use to
change it. A BeginEditLabel event is reported at the start of the edit operation and an
EndLabelEdit event is reported on its completion. You may control the edit of a par-
ticular label using callback functions attached to these events.

Elevated Property
Applies To: Button

Description

The Elevated property applies only to a Button whose Style is 'CommandLink'.

Elevated is a Boolean scalar with a default value of 0. When set to 1, the icon on the
CommandLink button changes from a "green arrow" to a "shield". This is intended to
convey to the user that the action associated with the Button requires Elevation. This
is a feature ofUser Account Control in Windows 7. See yourWindows doc-
umentation for further information. Note that APL does not take any action (other
than to cause the icon to change) when Elevated is set to 1. This is the responsibility
of the programmer.

Chapter 2: A-Z Reference 207

Ellipse Object
Purpose: A Graphical object to draw ellipses, arcs, and pie-slices.

Parents ActiveXControl, Animation, Bitmap, Button, ButtonEdit, Combo,
ComboEx, Edit, Form, Grid, Group, Label, List, ListView,
MDIClient, Metafile, Printer, ProgressBar, PropertyPage,
PropertySheet, RichEdit, Scroll, Spinner, Static, StatusBar,
SubForm, TabBar, TipField, ToolBar, TrackBar, TreeView,
UpDown

Children Timer

Properties Type, Points, Size, FCol, BCol, Start, End, ArcMode, LStyle,
LWidth, FStyle, FillCol, Coord, Visible, Event, Dragable, OnTop,
CursorObj, AutoConf, Data, Accelerator, KeepOnClose,
DrawMode, MethodList, ChildList, EventList, PropList

Methods Detach

Events Close, Create, DragDrop, MouseDown, MouseUp, MouseMove,
MouseDblClick, Help, Select

Description

This object duplicates much of the functionality of the Circle object, but differs in
two major respects. Firstly, ellipses, circles, and arcs are specified in terms of their
bounding rectangles, rather than in terms of their centre(s) and radii. Secondly, the
Ellipse object behaves like any other (rectangular) object when it is resized by its par-
ent. The Circle object behaves differently in that when resized by its parent, it main-
tains a constant ratio between its physical height and width.

The Points property specifies one or more sets of co-ordinates which define the posi-
tion(s) of one or more bounding rectangles. The position is defined to be the position
of the corner that is nearestto the origin of its parent. The default is therefore its top-
left corner.

Chapter 2: A-Z Reference 208

The Size property specifies the height and width of each bounding rectangle, meas-
uring away from the origin. To obtain a perfect circle, you must take the aspect ratio
of the device into account. This is available from the DevCaps property of the Root
and Printer objects. Alternatively you can use the Circle object.

The Start and/or End properties are used to draw partial ellipses and circles. They
specify start and end angles respectively, measuring from the x-axis at the centre of
the bounding rectangle in a counter-clockwise direction and are expressed in radians.
The type of arc is controlled by ArcMode as follows.

Arcmode Effect

0 An arc is drawn from Start to End.

1
An arc is drawn from Start to End. In addition, a single straight
line is drawn from one end of the arc to the other, resulting in a
segment.

2 An arc is drawn from Start to End. In addition, two lines are drawn
from each end of the arc to the centre, resulting in a pie-slice.

LStyle and LWidth define the style and width of the lines used to draw the bound-
aries of the ellipse(s), circle(s) or arc(s). FCol and BCol determine the colour of the
lines.

FStyle specifies whether or not the ellipse(s), circle(s) or arc(s) are filled, and if so,
how. For a solid fill (FStyle 0), FillCol defines the fill colour used. For a pattern fill
(FStyle 1-6) FillCol defines the colour of the hatch lines and BCol the colour of the
spaces between them.

The value of Dragable determines whether or not the object can be dragged. The
value of AutoConf determines whether or not the Ellipse object is resized when its
parent is resized.

The structure of the property values is best considered separately for single and mul-
tiple ellipses, circles or arcs .

Chapter 2: A-Z Reference 209

Single Ellipse, Circle or Arc
For a single ellipse, circle or arc, Points is a 2-element vector which specifies the y-
coordinate and x-coordinate of the top-left corner of the bounding rectangle.

Size is also a simple 2-element vector whose elements specify the height and width
of the bounding rectangle.

LStyle and LWidth are both simple scalar numbers.

FStyle is either a single number specifying a standard fill pattern, or the name of a
Bitmap object which is to be used to fill the ellipse, circle or arc.

FCol, BCol and FillCol are each either single numbers representing standard colours,
or 3-element vectors which specify colours explicitly in terms of their RGB values.

Examples:

First make a Form :

'F' ⎕WC 'Form'

Draw a complete ellipse within the bounding rectangle located at (y=10, x=5) with
(height=30, width=50) :

'F.E1' ⎕WC 'Ellipse' (10 5)(30 50)

Draw an elliptical arc within the same bounding rectangle as above, occupying the
upper right quadrant (0 to 90 degrees):

'F.E1' ⎕WC 'Ellipse' (10 5)(30 50)('End'(○0.5))

Ditto, but between 45 and 135 degrees :

'F.E1' ⎕WC 'Ellipse' (10 5)(30 50)('Start'(○0.25))
('End'(○0.75))

Ditto, but join the points of the arc to the centre of the ellipse, making a "pie-slice":

'F.E1' ⎕WC 'Ellipse' (10 5)(30 50)('Start'(○0.25))
('End'(○0.75))('ArcMode' 2)

Ditto, but use a green line and solid red fill :

'F.E1' ⎕WC 'Ellipse' (10 5)(30 50)('Start'(○0.25))
('End'(○0.75))('ArcMode' 2)('FCol' 0 0 255)('FStyle' 0)
('FillCol' 255 0 0)

Chapter 2: A-Z Reference 210

Multiple Ellipses, Circles or Arcs
To draw a set of ellipses, circles, or arcs with a single name, Points may be a simple 2-
element vector (specifying the location of all the bounding rectangles), or a 2-col-
umn matrix whose first column specifies their y-coordinates and whose second col-
umn specifies their x-coordinates, or a 2-element nested vector whose first element
specifies their y-coordinate(s) and whose second element specifies their x-coordinate
(s).

Likewise, Size may be a simple 2-element vector (applying to all the bounding rec-
tangles), or a 2-column matrix whose first column specifies their heights and whose
second column specifies their widths, or a 2-element nested vector whose first ele-
ment specifies their height(s) and whose second element specifies their width(s).

If specified, Start and/or End define arcs in terms of the angles made by drawing a
line from the centre of the bounding box to the two ends of the arc. Both properties
may be simple scalars, or vectors containing one element per arc drawn.

If Start is specified, but not End, end angles default to (¯1↓+\Start),○2. If End
is specified, but not Start, start angles default to 0,¯1↓+\End

This means that you can draw a pie-chart using either Start or End angles; you do not
have to specify both.

ArcMode, LStyle and LWidth may each be simple scalar values (applying to all the
ellipses, circles or arcs) or simple vectors whose elements refer to each of the cor-
responding ellipses, circles or arcs in turn.

FStyle may be a simple scalar numeric or a simple character vector (Bitmap name)
applying to all rectangles, or a vector whose elements refer to each of the cor-
responding ellipses, circles or arcs in turn.

Similarly, FCol, BCol and FillCol may each be single numbers or a single (enclosed)
3-element vector applying to all the rectangles. Alternatively, these properties may
contain vectors whose elements refer to each of the rectangles in turn. If so, their ele-
ments may be single numbers or nested RGB triplets, or a combination of the two.

The Coord, Dragable and Data properties are specified for the object as a whole, and
may not be allocated different values for each individual ellipse, circle or arc that is
drawn.

Chapter 2: A-Z Reference 211

Examples
First make a Form :

'F' ⎕WC 'Form'

Draw two ellipses in bounding rectangles located at (y=5, x=10) and (y=5, x=60),
each of (height=40, width=10)

'F.E1' ⎕WC 'Ellipse' ((5 5)(10 60)) (40 10)

Ditto, using scalar extension for (y=5) :

'F.E1' ⎕WC 'Ellipse' (5(10 60)) (40 10)

Ditto, but draw the first with (height=40, width=30) and the second with (height=20,
width=10) :

'F.E1' ⎕WC 'Ellipse' (5(10 60)) ((40 20)(30 10))

Draw an elliptical Pie-Chart in a bounding rectangle located at (y=5, x=10) with a
height and width equal to 40% of the height and width of the parent Form. Each of
the 4 pie-slices is bounded by a black line :

Data ←12 27 21 40
ANGLES←0,¯1↓((○2)÷+/Data)×+\Data
COLS←(255 0 0)(0 255 0)(255 255 0)(0 0 255)
PATS←1 2 3 4

'F.PIE' ⎕WC 'Ellipse'(5 10)(40 40)
('Start' ANGLES)('ArcMode' 2)
('FCol' (⊂0 0 0))('FStyle' PATS)
('FillCol' COLS)

Chapter 2: A-Z Reference 212

Encoding Property
Applies To: TCPSocket

Description

The Encoding property is a character vector that specifies how character data are
encoded or translated. The possible values are 'None', 'UTF-8', 'Classic', or
'Unicode', depending upon the the value of the Style property.

Table 2: Unicode Edition
Style Encoding Description

'Raw' 'None'
Not applicable. Only integer data may be
transmitted/received.

'Char'

'None'

Transmission is limited to characters with Unicode
code points in the range 0-255. Attempting to
transmit (or receive) a character outside this range
will cause DOMAIN ERROR.

'UTF-8'
Characters are transmitted/received using the UTF-8
encoding scheme.

'APL'

'Classic'

Characters are transmitted/received as indices of
⎕AV, and translated according to the current value
of ⎕AVU. An attempt to transmit or receive a
characters not present in ⎕AVU will cause
TRANSLATION ERROR

'Unicode'
Characters are transmitted/received as is (as Unicode
code points).

Chapter 2: A-Z Reference 213

Table 3: Classic Edition
Style Encoding Description

'Raw' 'None'
Not applicable. Only integer data may be
transmitted/received.

'Char'

'None'
Characters (which are represented internally as
indices of ⎕AV)are translated to and from ASCII
using the Output Translate Table win.dot.

'UTF-8'

Characters are converted to/from Unicode using
⎕AVU and transmitted/received using the UTF-8
encoding scheme. An attempt to transmit or receive
a characters not present in ⎕AVU will cause
TRANSLATION ERROR.

'Raw'

'Classic'
Characters are transmitted/received as indices of
⎕AV.

'Unicode'

Characters are converted to/from Unicode using
⎕AVU and transmitted/received as Unicode code
points. An attempt to transmit or receive a
characters not present in ⎕AVU will cause
TRANSLATION ERROR.

The default value of Encoding depends upon the value of Style as indicated Default
values are highlighted thus. in the above tables.

An attempt to set the value of Encoding to a value not valid for the current Style, as
implied by the above tables, will cause DOMAIN ERROR.

If you change the value of the Style property, the value of Encoding will remain
unchanged if it is valid for the new Style. Otherwise it will revert to the default value
for the new value of Style.

's0'⎕WC'TCPSocket' ('LocalPort' 2001)
s0.(Style Encoding)

Char None

s0.Style←'APL'
s0.(Style Encoding)

Apl Classic

Note that the 'Classic' encoding is intended for use in communicating with the
Classic Edition, and with programs designed to communicate with Version 11.0 or
earlier. This is why it is the default for now. However, it is however intended that the
default will change to 'Unicode'in due course.

Chapter 2: A-Z Reference 214

End Property
Applies To: Circle, Ellipse

Description

This property specifies one or more end-angles for an arc, pie-slice, or chord of a cir-
cle or ellipse. It may be used in conjunction with Start which specifies start angles.
Angles are measured counter-clockwise from the x-axis at the centre of the object.

If a single arc is being drawn, End is a single number that specifies the end angle of
the arc in radians (0 ⍎> ○2). If multiple arcs are being drawn, End is either a single
number as before (the end angle for several concentric arcs) or a numeric vector with
one element per arc.

If Start is not specified, the default value of End is ○2. Otherwise, the default value of
End is ((¯1↓+\Start),○2).

EndEditLabel Event 301
Applies To: ListView, TreeView

Description

If enabled, this event is reported when the user signals completion of an edit oper-
ation in a ListView or TreeView object. This occurs when the item being edited loses
the focus or when the user presses the Enter key. The default processing for the event
is to update the item label (string) with the edited text in the pop-up edit box.

You may disable the update operation by setting the action code for the event to ¯1.
You may also prevent the update from occurring by returning 0 from a callback func-
tion. You may specify the text used to update the item by returning the event mes-
sage (containing the desired text) from a callback function. Finally, you may change
the text of any item dynamically by calling EndEditLabel as a method.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 4-element vector as follows :

[1] Object ref or character vector

[2] Event 'EndEditLabel' or 301

[3] Item number Integer. The index of the item.

[4] Text character vector containing the text that will be used to
update the item's label.

Chapter 2: A-Z Reference 215

EndSplit Event 282
Applies To: Splitter

Description

If enabled, this event is reported when the user releases the left mouse button to sig-
nify the end of a drag operation on a Splitter object.

This event is reported for information alone. You may not disable or nullify the event
by setting the action code for the event to ¯1 or by returning 0 from a callback func-
tion.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 6-element vector as follows :

[1] Object ref or character vector

[2] Event 'EndSplit' or 282

[3] Y y-position of top left corner

[4] X x-position of top left corner

[5] H height of the Splitter

[6] W width of the Splitter

See also StartSplit, Splitting.

EnterReadOnlyCells Property
Applies To: Grid

Description

This is a Boolean property that specifies whether or not the user may visit read-only
cells in a Grid object. Its default value is 1.

In this context, a read-only cell is one that satisfies one or more of the following con-
ditions:

l it has no associated Input object
l its associated Input object is a Label
l its associated Input object is an Edit object with ReadOnly set to 1.
l its associated Input object is inactive (Active0)

Chapter 2: A-Z Reference 216

If EnterReadOnlyCells is set to 0 and the user clicks the mouse on a read-only cell,
the current cell does not change although CellDown, CellUp and CellDblClick
events are reported if enabled. If the user presses a cursor movement key that would
otherwise cause the cursor to move into a read-only cell, the cursor moves instead to
the nearest editable cell in the appropriate direction.

EvaluationDays Property
Applies To: Root

Description

This is a read-only property that reports the number of days remaining before an eval-
uation version of a Dyalog APL run-time application expires.

It is provided so that you can display an appropriate message box to notify your end-
user when your application is started.

PocketAPL only

Chapter 2: A-Z Reference 217

Event Property
Applies To: ActiveXContainer, ActiveXControl, Animation, Bitmap,

BrowseBox, Button, ButtonEdit, Calendar, Circle, Clipboard,
ColorButton, Combo, ComboEx, CoolBand, CoolBar, Cursor,
DateTimePicker, Edit, Ellipse, FileBox, Form, Grid, Group, Icon,
Image, ImageList, Label, List, ListView, Locator, Marker,
MDIClient, Menu, MenuBar, MenuItem, Metafile, MsgBox,
OCXClass, OLEClient, OLEServer, Poly, Printer, ProgressBar,
PropertyPage, PropertySheet, Rect, RichEdit, Root, Scroll,
Separator, SM, Spinner, Splitter, Static, StatusBar, StatusField,
SubForm, SysTrayItem, TabBar, TabBtn, TabButton, TabControl,
TCPSocket, Text, Timer, TipField, ToolBar, ToolButton,
ToolControl, TrackBar, TreeView, UpDown

Description

This property defines how an object responds to user actions. Unlike other properties
which only have a single value, this property has a value corresponding to each of
the events that may be generated by a particular object. Each event setting is spec-
ified by a 2 or 3-element vector containing :

[1]
event name(s) (optionally prefixed by the string 'on') or event number
(s) (numeric scalar or vector).

[2]

action code (numeric scalar or character vector)
¯1 inhibit (ignore) event

0 handle event, do not report to APL

1 handle event, then report to APL

fn name of callback function

fn& name of callback function to be executedasynchronously

⍎expr expression to be executed

[3] any array (optional)

The event number 0 and the event name 'All', apply to all events supported by
that object.

Like any other property, the Event property can be set using assignment. However,
certain special considerations apply which are discussed later.

Chapter 2: A-Z Reference 218

If action is set to ¯1, the event is ignored by APL. If, for example, you set the action
on a KeyPress event to ¯1, all keystrokes for the object in question will be ignored.
Similarly, if you set the action on a Close event for a Form to ¯1, the user will be
unable to close the Form. This is possible because APL intercepts most events before
Windows itself takes any action. However, certain events (e.g. focus change events)
are not notified to APL until after the event has occurred and afterWindows has
itself responded in some way. In these circumstances it is not always practical for
APL to undo what Windows has already done, and an action code of ¯1 is treated as
if it were 0. For further details, see the individual entries for each event type in this
Chapter.

If action code is set to 0 (the default), the event is processed by APL and Windows in
the normal way (this is referred to herein as "default processing") but your program is
not notified in any way that the event has occurred. For example, the default proc-
essing for a keystroke is to action it (via the translate table) and either echo a char-
acter in the object or perform some other appropriate function.

If action code is set to 1, the event is first processed by APL (and Windows) in the
normal way, then ⎕DQ terminates, returning an event message as its result. The for-
mat of the event message is given under the description of each event type.

If action code is set to a character vector that specifies the name of a function, this
function (termed a "callback") will be executed automatically by ⎕DQ whenever the
event occurs. Default processing of the event is deferred until after the callback has
been run, and may be inhibited or modified by its result. If the callback function
returns no result, or returns a scalar 1, normal processing of the event is allowed to
continue as soon as the callback completes. If the callback returns a scalar 0, normal
processing of the event is inhibited and the effect is identical to setting the action
code to ¯1. A callback function may also return an event message as its result. If so,
⎕DQwill action this event rather than the original one that fired the callback.

Note that that if a callback function does not exist at the instant it is invoked, ⎕DQ ter-
minates with a VALUE ERROR. However, the name of the missing function is
reported in the Status Window.

If, in setting the Event property, the event name is prefixed by the string 'on', for
example, 'onSelect', the right argument to the callback function will contain one
or more object references. If not, it will contain the corresponding object names or, if
the object has no name, its display form.

If the character & is appended to the name of a callback function, the callback is
executed asynchronously in a new thread. In this case, default processing of the
event is performed immediately. Such a callback should not return a result; if it does
so, it will be treated as normal output and will therefore be displayed in the Session
window.

Chapter 2: A-Z Reference 219

When a callback function is invoked by ⎕DQ, the corresponding event message is
supplied as its right argument. The format of the event message is given under the
description of each event type in this chapter. Note that the first element of the event
message is always a reference to or the name of the object that generated the event. It
is a referenceif the event name was prefixed by the string 'on'; otherwise it is a char-
acter vector containing the object's name.

If an array was specified as the 4th element of the value of the Event property, the
value of this array is supplied as its left argument.

Notice that ⎕DQ takes account of the syntax defined for the callback, and supplies
these arguments only if it is appropriate to do so. It is possible therefore to use a nila-
dic callback function. This is appropriate if the callback can perform its task without
needing to interrogate the event message.

If action code is set to a character vector whose first element is the execute symbol
(⍎) the remaining string will be executed automatically whenever the event occurs.
The default processing for the event is performed first and may not be changed or
inhibited in any way.

Notice that when you specify the action to be taken on the occurrence an event there
is a great difference between 'FOO'and '⍎FOO'. The former causes APL to invoke
the function FOO as a callback function. If the function takes an argument, APL will
supply it with the event message. Secondly, the result (if any) of the function
FOOwill be used by APL and may cause the event to be disabled or changed in some
way. In the second case, APL will perform the default processing for the event and
then execute FOO without supplying an argument. If the function returns a result, it
will be displayed in the Session.

When using ⎕WC and ⎕WSto assign different events to different callbacks, it is not
necessary to repeat the 'Event' keyword. Instead, several event settings can be
specified at once. In any given occurrence of the Event property you may use event
number(s) or event name(s); however you may not mix numbers and names together.

If you use event names, your callback functions will receive event names in their
right argument when invoked. That is to say that the second element of the event mes-
sage will be a character vector. If you use event numbers, the second element of the
event message will be numeric. If you want to specify several event names at once,
you must enclose them. If you use numbers, ⎕WCand ⎕WS are more tolerant about the
structureof their arguments, and will accept many different expressions.

Chapter 2: A-Z Reference 220

If no events are set, the result obtained by ⎕WGand the result obtained by referencing
Event directly are different:

'F'⎕WC'Form'
DISPLAY 'F'⎕WG'Event'

.→--.
|0 0|
'~--'

DISPLAY F.Event
.⊖------------.
| .→--------. |
	.⊖. .⊖.					
	'-' '-'					
'∊--------'						
'∊------------'

Asynchronous Callback Functions
If you append the character & to the name of the callback function in the Event spec-
ification, the callback function will be executed asynchronously in a new thread
when the event occurs. If not, it is execute synchronously.

For example, the event specification:

onSelect←'DoIt&'

tells ⎕DQ to execute the callback function DoIt asynchronously as a thread when a
Select event occurs on the object. Note that a callback function executed in this way
should not return a result (because ⎕DQdoes not wait for it) and any result will be dis-
played in the Session window.

Specifying the Event property using Assignment
There are two ways to specify the Event property using assignment; you can specify
the entire set of events, or you can set individual events one by one.

To specify the entire set of events, the array assigned to Event must contain one or
more nested vectors, each containing 2 or 3 elements as described above. For exam-
ple, if F1 is a Form:

Invoke callback function FOO on MouseDown, the first element of the right argu-
ment to FOOwill contain a namespace reference to F1. All other events perform their
default actions.

F1.Event ← 'onMouseDown' 'FOO'

Chapter 2: A-Z Reference 221

Invoke callback function FOO on MouseDown, the first element of the right argu-
ment to FOO will contain the character vector'F1'. All other events perform their
default actions.

F1.Event ← 'MouseDown' 'FOO'

Invoke callback function FOO on MouseDown and MouseUp. All other events per-
form their default actions.

F1.Event ← ('onMouseDown' 'FOO')('onMouseUp'
'FOO')

Add callback function FOO with ('THIS' 1) as its left-argument on the Mouse-
Move event. All other events perform their default actions.

F1.Event, ← ⊂ 'onMouseMove' 'FOO' ('THIS' 1)

To set individual events one by one, you make the assignment to the event name pre-
fixed by the string 'on'. In all cases, the first element of the right argument to
FOOwill contain a namespace reference to F1. You must use the 'on' prefix; you
cannot assign to the Event name itself.

Invoke callback function FOO on MouseDown.

F1.onMouseDown ← 'FOO'

Add the same callback for MouseUp.

F1.onMouseUp ← 'FOO'

Add callback function FOO with ('THIS' 1) as its left-argument on the Mouse-
Move event.

F1.onMouseMove ← 'FOO' ('THIS' 1)

Specifying the Event property using ⎕WC and ⎕WS
Examples using Event Names (⎕WS)
Ignore MouseDown (1) event (APL will perform the default processing for you)

'F1' ⎕WS 'Event' 'MouseDown' 0

Terminate ⎕DQ on MouseDown

'F1' ⎕WS 'Event' 'MouseDown' 1

Invoke callback function FOO on MouseDown, the first element of the right argu-
ment to FOOwill contain a namespace reference to F1.

'F1' ⎕WS 'Event' 'onMouseDown' 'FOO'

Chapter 2: A-Z Reference 222

Invoke callback function FOO on MouseDown, the first element of the right argu-
ment to FOOwill contain the character vector'F1'.

'F1' ⎕WS 'Event' 'MouseDown' 'FOO'

Invoke callback function FOO on MouseDown and MouseUp

'F1' ⎕WS 'Event' ('onMouseDown' 'onMouseUp') 'FOO'

Invoke callback function FOO with ('THIS' 1) as its left-argument on Mouse-
Down

'F1' ⎕WS 'Event' 'onMouseDown' 'FOO' ('THIS' 1)

Invoke callback function FOO with ('THIS' 1) as its left-argument on Mouse-
Down, MouseUp and MouseMove

EV ← 'onMouseDown' 'onMouseUp' 'onMouseMove'
'F1' ⎕WS 'Event' EV 'FOO' ('THIS' 1)

Execute the expression COUNT +←1 on MouseDown

'F1' ⎕WS 'Event' 'MouseDown' '⍎COUNT+←1'

Execute the expression COUNT +←1 on MouseDown, MouseUp and MouseMove

EV ← 'MouseDown' 'MouseUp' 'MouseMove'
'F1' ⎕WS 'Event' EV '⍎COUNT+←1'

Examples using Event Numbers (⎕WS)
Ignore MouseDown (1) event (APL will perform the default processing for you)

'F1' ⎕WS 'Event' (1 0)
'F1' ⎕WS 'Event' 1 0 ⍝ Ditto

Terminate ⎕DQ on MouseDown

'F1' ⎕WS 'Event' (1 1)
'F1' ⎕WS 'Event' 1 1 ⍝ Ditto

Call function FOO on MouseDown

'F1' ⎕WS 'Event' (1 'FOO')
'F1' ⎕WS 'Event' 1 'FOO' ⍝ Ditto

Call function FOO on MouseDown and MouseUp

'F1' ⎕WS 'Event' ((1 2) 'FOO')
'F1' ⎕WS 'Event' (1 2) 'FOO' ⍝ Ditto
'F1' ⎕WS 'Event' 1 2 'FOO' ⍝ Ditto
'F1' ⎕WS 'Event' (1 'FOO')(2 'FOO') ⍝ Ditto

Chapter 2: A-Z Reference 223

Call function FOO with ('THIS' 1) as its left-argument on MouseDown

'F1' ⎕WS 'Event' (1 'FOO' ('THIS' 1))
'F1' ⎕WS 'Event' 1 'FOO' ('THIS' 1) ⍝ Ditto

Call function FOO with ('THIS' 1) as its left-argument on MouseDown and Mou-
seUp

'F1' ⎕WS 'Event' ((1 2) 'FOO' ('THIS' 1))
'F1' ⎕WS 'Event' (1 2) 'FOO' ('THIS' 1) ⍝ Ditto
'F1' ⎕WS 'Event' 1 2 'FOO' ('THIS' 1) ⍝ Ditto
'F1' ⎕WS 'Event' 1 2 'FOO' ('THIS' 1) ⍝ Ditto

Execute the expression COUNT +←1 on MouseDown

'F1' ⎕WS 'Event' 1 '⍎COUNT+←1'

Execute the expression COUNT +←1 on MouseDown, MouseUp and MouseMove

'F1' ⎕WS 'Event' (1 2 3) '⍎COUNT+←1'
'F1' ⎕WS 'Event' 1 2 3 '⍎COUNT+←1' ⍝ Ditto

User defined Events
In addition to the standard events supported directly by Dyalog APL, you may spec-
ify your own events. For these, you must use event numbers; user-defined event
names are not allowed.

You may use any numbers not already defined, but it is strongly recommended that
you choose numbers greater than 1000 to avoid potential conflict with a future
release of Dyalog APL.

You can only generate user-defined events under program control with ⎕NQ.

Chapter 2: A-Z Reference 224

EventList Property
Applies To: ActiveXContainer, ActiveXControl, Animation, Bitmap,

BrowseBox, Button, ButtonEdit, Calendar, Circle, Clipboard,
ColorButton, Combo, ComboEx, CoolBand, CoolBar, Cursor,
DateTimePicker, Edit, Ellipse, FileBox, Font, Form, Grid, Group,
Icon, Image, ImageList, Label, List, ListView, Locator, Marker,
MDIClient, Menu, MenuBar, MenuItem, Metafile, MsgBox,
OCXClass, OLEClient, OLEServer, Poly, Printer, ProgressBar,
PropertyPage, PropertySheet, Rect, RichEdit, Root, Scroll,
Separator, SM, Spinner, Splitter, Static, StatusBar, StatusField,
SubForm, SysTrayItem, TabBar, TabBtn, TabButton, TabControl,
TCPSocket, Text, Timer, TipField, ToolBar, ToolButton,
ToolControl, TrackBar, TreeView, UpDown

Description

This is a read-only property that reports the names of all the events supported by an
object.

ExitApp Event 132
Applies To: Root

Description

If enabled, this event is reported when the user attempts to terminate a Dyalog
APL/W application from the Windows Task List.

The Windows Task list displays the names of all running applications. The name dis-
played for a Dyalog APL/W application is defined by the Caption property of the sys-
tem object Root. If you fail to define this property, there will be no entry for the
application in the Task List.

If you wish to prevent the user from terminating your application from the Windows
Task List, you may disable this event by setting its action code to ¯1. However, if
you do this, your user may be puzzled as to why the operation does not work as
expected. An alternative is to attach a callback function to the event which displays
a message box. Not only does this allow you to provide user feedback, but you can
provide confirm/cancel options. If your callback function returns a zero, your appli-
cation will not be terminated.

Chapter 2: A-Z Reference 225

Note that this event only provides for termination via the Windows Task List. See
also the ExitWindows event.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 2-element vector as follows :

[1] Object ref or character vector

[2] Event 'ExitApp' or 132

ExitWindows Event 131
Applies To: Root

Description

If enabled, this event is reported when the user attempts to terminate the Windows
Operating System.When this is done, Windows gives all running applications the
opportunity to prevent it. Typically, an application that has unsaved changes will dis-
play a dialog box warning the user of this situation and offering the opportunity to
cancel the termination. The default action for this event is to allow Windows to
close. You can prevent this by returning a zero from a callback function. You can
also prevent the user from closing Windows down by disabling the event altogether.
This is achieved by setting its action code to ¯1. In most cases this is less preferable
than the callback method as it does not allow you to inform the user as to why Win-
dows won't terminate.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 2-element vector as follows :

[1] Object ref or character vector

[2] Event 'ExitWindows' or 131

[3] Flag 0 or 1

Chapter 2: A-Z Reference 226

Expanding Event 302
Applies To: Grid, TreeView

Description

If enabled, this event is reported by a Grid or a TreeView object just before it is about
to expand to show additional rows or children of the current item.

In a Grid, this occurs when the user clicks the picture or tree line in the row title.

In a Treeview, this occurs when the user double-clicks the item label or clicks in the
button or on the tree line to the left of the item label.

The default processing for the event is to expand the tree at the corresponding point.

You may disable the expand operation by setting the action code for the event to ¯1.
You may also prevent the expand from occurring by returning 0 from a callback func-
tion. You may expand an object dynamically under program control by calling
Expanding as a method.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 3-element vector as follows :

[1] Object ref or character vector

[2] Event 'Expanding' or 302

[3] Item number Integer. The index of the row or item.

ExportedFns Property
Applies To: OLEServer

Description

This property specifies the functions to be exposed as methods by an OLEServer
object.

ExportedFns may be set to 0 (none), 1 (all), or a vector of character vectors containing
the names of the functions to be exported.

There are certain important restrictions concerning the type of function that you can
export as a method.

Firstly, only top-level defined functions within the OLEServer may be exported; you
cannot export functions in other namespaces including sub-namespaces.

Chapter 2: A-Z Reference 227

Furthermore, you may not export defined operators, dynamic functions, external func-
tions, or functions created by function assignment.

Finally, OLE does not support the concept of a dyadic function, so your exported
functions must be niladic, monadic, or take an optional left argument; they may not
be explicitly dyadic.

If you wish to export a new function from your OLEServer, and ExportedFns is not 1,
you must explicitly reset the value of the ExportedFns property before you re-save
the workspace.

ExportedVars Property
Applies To: OLEServer

Description

This property specifies the variables to be exposed as properties by an OLEServer
object.

ExportedVars may be set to 0 (none), 1 (all), or a vector of character vectors con-
taining the names of the variables to be exported.

Note that you may not export external variables or shared variables, or variables in
other namespaces.

If you wish to export a new variable from your OLEServer, and ExportedVars is not
1, you must explicitly reset the value of the ExportedVars property before you re-
save the workspace.

Chapter 2: A-Z Reference 228

Expose Event 32
Applies To: ActiveXControl, Animation, Button, ButtonEdit, Calendar,

ColorButton, Combo, ComboEx, CoolBar, DateTimePicker, Edit,
Form, Grid, Group, Label, List, ListView, MDIClient, ProgressBar,
PropertyPage, RichEdit, Scroll, Spinner, Static, StatusBar, SubForm,
TabBar, ToolBar, ToolControl, TrackBar, TreeView, UpDown

Description

If enabled, this event is reported when part or all of the object's window is exposed to
view. Under normal circumstances, APL repaints the exposed region automatically.
However, if you have drawn unnamed graphical objects (which are notmanaged by
APL) you should use this event to redraw themwhen required. Note that APL will
itself repaint any named objects in the region before reporting the event.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 6-element vector as follows :

[1] Object ref or character vector

[2] Event 'Expose' or 32

[3] Y y-position of top-left corner of exposed region

[4] X x-position of top-left corner of exposed region

[5] H height of exposed region

[6] W width of exposed region

This event cannot be disabled by setting its action code to ¯1. Similarly, setting the
result of a callback function to 0 has no effect on it.

Chapter 2: A-Z Reference 229

FCol Property
Applies To: ActiveXContainer, ActiveXControl, Button, ButtonEdit, Circle,

Combo, ComboEx, CoolBand, CoolBar, Edit, Ellipse, Grid, Group,
Label, List, ListView, Marker, Menu, MenuItem, Poly, Rect,
RichEdit, Separator, Spinner, Static, StatusBar, StatusField, TabBtn,
Text, TipField, ToolBar, TreeView, UpDown

Description

This property defines the foreground colour(s) of an object. For non-graphical
objects, FCol specifies a single colour. For graphical objects with more than one con-
stituent part, it may specify a set of background colours, one for each part. A single
colour is represented by a single number which refers to a standard colour, or by a 3-
element vector which defines a colour explicitly in terms of its red, green and blue
intensities.

If FCol is 0 (which is the default) the foreground colour is defined by your current
colour scheme for the object in question. For example, if you select red as yourMS-
Windows "Button Text" colour, you will by default get red writing on all your But-
ton objects, simply by not specifying FCol or by setting it to 0.

A negative value of FCol refers to a standard MS-Windows colour as described
below. Positive values are reserved for a possible future extension.

FCol Colour Element FCol Colour Element

0 Default ¯11 Active Border

¯1 Scroll Bars ¯12 Inactive Border

¯2 Desktop ¯13 Application Workspace

¯3 Active Title Bar ¯14 Highlight

¯4 Inactive Title Bar ¯15 Highlighted Text

¯5 Menu Bar ¯16 Button Face

¯6 Window Background ¯17 Button Shadow

¯7 Window Frame ¯18 Disabled Text

¯8 Menu Text ¯19 Button Text

¯9 Window Text ¯20 Inactive Title Bar Text

¯10 Active Title Bar Text ¯21 Button Highlight

Chapter 2: A-Z Reference 230

If instead, FCol contains a 3-element vector, it specifies the intensity of the red, green
and blue components of the colour as values in the range 0-255. For example, (255 0
0) is red and (255 255 0) is yellow.

Note that if the colour specified by FCol would normally be rendered as a dithered
colour, it is instead converted to the nearest pure colour available on the device. The
actual colour realised also depends upon the capabilities of the display adapter and
driver, and the current Windows colour map.

For a Button, Combo, Edit, Label, List, Menu and MenuItem, FCol refers to the
colour of the text in the object. Borders around these objects (where applicable) are
drawn using the standard Windows colour. For a Static object however, FCol spec-
ifies the colour of its border.

For the Ellipse, Poly and Rect objects, FCol specifies the colour of the line drawn
around the perimeter of the object. If a dashed or dotted line is used (LStyle 1-4) the
"gaps" in the line are drawn using the colour specified by BCol, or are left undrawn if
BCol is not specified. For the Marker object, FCol specifies the colour in which the
markers are drawn. For the graphics objects Ellipse, Poly, Rect and Text, FCol may be
a vector of 3-element vectors specifying a set of colours for the constituent parts of
the object. For example, a Poly object consisting of four polygons, may have a FCol
property of four 3-element vectors. In addition, for graphics objects, FCol is used in
place of FillCol if the latter is not specified.

FieldType Property
Applies To: ButtonEdit, DateTimePicker, Edit, Label, Spinner

Description

The FieldType property controls data conversion, formatting and validation. For
Edit, Label and Spinner objects, FieldType controls how the Value property of these
objects is interpreted.

FieldType is a character vector. If it is empty (the default), the Text or Label object is
a standard text object with no special formatting or, in the case of an Edit, no input
validation. For a DateTimePicker, an empty FieldType implies the default which is
'Date'.

Chapter 2: A-Z Reference 231

For a DateTimePicker, FieldType may be one of the following:

'Date' Uses Windows "short date" format

'DateCentury'
Uses Windows "short date" format but with a 4-digit year
regardless of user preference

'LongDate' Uses Windows "long date" format

'Time' Uses Windows time format

'Custom'
Uses a special format defined by the CustomFormat
property

The value of the date or time is represented by the DateTime property. Note that all
validation is performed by the object itself, and it is impossible to enter an invalid
value.

For an Edit, Label and Spinner, if FieldType is defined, the contents of the object are
defined by its Value property, which is a number, rather than by its Text property,
and special formatting and validation rules are applied. FieldType may be one of the
following :

'Numeric' Simple numeric formatting and validation

'LongNumeric' Uses Windows number format

'Date' Uses Windows "short date" format

'LongDate' Uses Windows "long date" format

'Currency' Uses Windows currency format

'Time' Uses Windows time format

'Char' No validation, forces Value to be a character vector

FieldType 'Char' only affects an Edit object. When the user enters data into a
standard single-line Edit object , the Value property is set to a number if the contents
are numeric, or to a character vector if the contents do not represent a valid number. If
FieldType is 'Char', the Value property is always set to a character vector, regard-
less of the type of the field contents.

If FieldType is 'Numeric', the object displays the number defined by its Value
property rounded to the number of decimal places specified by its Decimals property.
The decimal separator character used will be as specified by the Number format in the
user's International Control Panel settings. If the object is an Edit object, the user is
prevented from entering anything but a valid number. The number of decimal digits
is also restricted to Decimals. When the user "leaves" the object, the number is re-for-
matted.

Chapter 2: A-Z Reference 232

If FieldType is 'LongNumeric', the object displays the number specified by its
Value property according to the Number format in the user's International Control
Panel settings. This format specifies the 1000 separator, decimal separator, decimal
digits and whether or not a leading zero is inserted. If the object is an Edit object, the
user is prevented from entering anything but a valid number. However, the character
specified for the 1000 separator is ignored and may be entered anywhere in the
number. When the user "leaves" the object, the number is re-formatted correctly.

If the FieldType is 'Currency', the object displays the number specified by its
Value property according to the Currency format in the user's International Control
Panel settings. This specifies the currency symbol and placement, the way in which a
negative value is displayed, and the number of decimal places. If the object is an Edit
object, the user is restricted to entering a "reasonable" value. When the user leaves
the object, the number is reformatted correctly.

If the FieldType is 'Date', the Value property represents the number of days since
January 1st 1900 and is displayed using the "short date" format specified by the user's
International Control Panel settings. If the object is an Edit object, the user is
restricted to entering a "reasonable" date. The object will accept any numeric triplet
separated by slash(/), colon (:) or space characters but checks that the day number and
month number lie in the range 1-31 and 1-12 respectively and will not allow the user
to enter a digit that would invalidate this. (Note that the position within the triplet of
the day, month and year are as specified by the Windows short date format). How-
ever, the user is not prevented from entering an invalid date such as 31st September.

If the FieldType is 'LongDate', the Value property represents the number of days
since January 1st 1900 and is displayed using the "long date" format specified by the
user's International Control Panel settings. If the object is an Edit object, its appear-
ance and behaviour automatically switches to FieldType 'Date' when it has the
input focus and back again when it loses the focus. This allows the user to edit or
input a date in a more convenient form.

If the FieldType is 'Time', the Value property represents the number of seconds
since midnight and is displayed using the time format specified by the user's Inter-
national Control Panel settings.

When the user attempts to move the input focus away from the object, the contents
are validated. If they cannot be converted to a valid number, date, or time, the object
generates a BadValue event, or, if the object is associated with a Grid, the Grid (and
not the Edit object) generates a CellError event. See the descriptions of these events
for further details.

Note that for Edit, Label and Spinner objects, FieldType may only be specified when
you create an object using ⎕WC.

Chapter 2: A-Z Reference 233

File Property
Applies To: Animation, Bitmap, Cursor, FileBox, Icon, Metafile, RichEdit

Description

For an Animation, Bitmap, Cursor or Icon object, this property is either a simple char-
acter vector or a 2-element nested vector.

If it is simple, File specifies the name of the associated bitmap (.BMP), icon (.ICO) or
cursor (.CUR) file.

If it is nested, the first element specifies the name of a DLL or (Icon only) EXE and
the second element identifies the particular bitmap, icon or cursor in that file. The
identifier may be its name (a character string), its resource id (a non-zero positive
integer) or (Icon only), its index (0 or negative integer) within the file. As a special
case, if the name of the file is an empty vector, the object is loaded fromDYA-
LOG.EXE or the Dyalog resource DLL. The name of the latter varies according to the
version installed but begins DYARES. In this case, the identifier must be a name or
resource id; indexes are not supported.

For a Metafile object, File must be simple and specifies the name of a metafile
(.WMF) file. For a RichEdit object, File must be simple and specifies the name of a
Rich text Format (.RTF) file.

When applied to a FileBox object, File contains the name (or names) of the selected
file (or files) depending upon the value of its Style ('Single' or 'Multi').

Chapter 2: A-Z Reference 234

FileBox Object
Purpose: Prompts user to select a file.

Parents ActiveXControl, CoolBand, Form, Grid, OLEServer, PropertyPage,
PropertySheet, Root, StatusBar, SubForm, TCPSocket, ToolBar,
ToolControl

Children Timer

Properties Type, Caption, Directory, Filters, File, FileMode, Style, Event,
Index, Data, EdgeStyle, KeepOnClose, MethodList, ChildList,
EventList, PropList

Methods Detach, Wait

Events Close, Create, FileBoxOK, FileBoxCancel, Select

Description

The FileBox object implements the standard Windows FileSelection Dialog Box.
This is a "modal" object. When you create a FileBox with ⎕WC, it is initially invisible
and the user cannot interact with it. To use it, you must execute ⎕DQ with the name
of the FileBox as its right argument. This causes the FileBox to be displayed. During
the "local" ⎕DQ the user may interact only with the FileBox, or with other appli-
cations. When the user terminates the operation (by pressing the "OK" or "Cancel"
Buttons, or by closing the window) the "local" ⎕DQ terminates, and the FileBox dis-
appears.

When the "local" ⎕DQ is terminated, the FileBox generates either an FileBoxOk(71)
or FileBoxCancel(72) event. The former is generated when the user presses the "OK"
button or closes the FileBox; the latter when the user presses the "Cancel" button.

The Caption property determines the text that appears in the title bar of the FileBox
window. If undefined, Caption defaults to "Save As" if FileMode is 'Write' or to
"Open" if FileMode is 'Read'. The Directory property contains a simple character
vector which specifies the initial directory fromwhich a list of suitable files is dis-
played.

'F' ⎕WC 'FileBox' 'The FileBox Object' 'C:\WDYALOG'
⎕DQ 'F'

The Style property specifies whether the user may choose a single file name
('Single' which is the default) or several file names ('Multi').

Chapter 2: A-Z Reference 235

The Filters property is a nested scalar or vector containing a list of filters. Each filter
is a 2-element vector of character vectors which contain a file type mask and a file
type description respectively. The file type descriptions appear in a drop-down
combo box labelled "List File of Type". When the user selects one of these, the cur-
rently selected directory is searched for files which match the corresponding mask.
The default value of Filters is an empty vector. This gives a file type mask of "*.*"
and a file type description of "All Files (*.*)". Hence an empty vector is equivalent to
(⊂'*.*' 'All Files (*.*)').

The FileMode property is a character vector which indicates the mode in which the
selected file is going to be opened. FileMode may be 'Read' (the default) or
'Write'. If FileMode is 'Write', files listed in the File Selection Box are
"greyed", although they may still be selected.

The Index property determines which of the filters is initially selected. Its default
value is ⎕IO.

Note that when ⎕DQ terminates with FileBoxOk, the File, Directory, and Index prop-
erties are updated to reflect the contents of the fields within the FileBox.

FileBoxCancel Event 72
Applies To: BrowseBox, FileBox

Description

If enabled, this event is reported when a FileBox is closed because the user has
pressed the "Cancel" button or closed it.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 3-element vector as follows :

[1] Object ref or character vector

[2] Event 'FileBoxCancel' or 72

[3] File name character vector containing the name of the currently
selected file (empty if none)

Chapter 2: A-Z Reference 236

FileBoxOk Event 71
Applies To: BrowseBox, FileBox

Description

If enabled, this event is reported when a FileBox is closed because the user has
pressed the "OK" button.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 3-element vector as follows :

[1] Object ref or character vector

[2] Event 'FileBoxOk' or 71

[3] File name character vector containing the name of the currently
selected file (empty if none)

FileMode Property
Applies To: FileBox

Description

The FileMode property applies only to a FileBox object. It indicates the mode in
which the selected file is going to be opened. It is a character vector containing
'Read' (the default) or 'Write'. If FileMode is 'Write', files listed in the File
Selection Box are greyed, although they may still be selected.

Chapter 2: A-Z Reference 237

FileRead Method 90
Applies To: Bitmap, Cursor, Icon, Metafile, RichEdit

Description

This method causes the object to be recreated from the file named in its File property.

The FileRead method is niladic.

[1] Object ref or character vector

[2] Event 'FileRead' or 90

If you attach a callback function to this event and have it return a value of 0, the
object will not be recreated from file.

FileWrite Method 91
Applies To: Bitmap, Cursor, Icon, Metafile, RichEdit

Description

This method causes the object to be written to the file named in its File property. For
the Bitmap and Icon objects this method will write a file of type .BMP and .ICO to a
file with the appropriate extension. If File specifies any other extension, the method
will fail with a DOMAIN ERROR:

DOMAIN ERROR: This object cannot be saved to this type of file.

The FileWrite method is niladic.

If you attach a callback function to this event and have it return a value of 0, the
object will not be written to file. You could use this to avoid overwriting an existing
file.

Chapter 2: A-Z Reference 238

FillCol Property
Applies To: Circle, Ellipse, Poly, Rect

Description

This property defines the fill colour in a graphics object.

If FStyle is 0 (solid fill) FillCol defines the colour with which the object is filled. If
FStyle is in the range 1-6 (pattern fill) it defines the colour of the lines that make up
the pattern. The areas between the lines are filled using the colour specified by BCol,
or are left undrawn (transparent) if BCol is not specified. If FStyle contains the name
of a Bitmap object, the value of FillCol is ignored.

A single colour is represented by a single number which refers to a standard colour,
or by a 3-element vector which defines a colour explicitly in terms of its red, green
and blue intensities. A negative value of FillCol refers to a standard MS-Windows
colour as described below. Positive values are reserved for a possible future exten-
sion.

FillCol Colour Element FillCol Colour Element

0 Default ¯11 Active Border

¯1 Scroll Bars ¯12 Inactive Border

¯2 Desktop ¯13 Application Workspace

¯3 Active Title Bar ¯14 Highlight

¯4 Inactive Title Bar ¯15 Highlighted Text

¯5 Menu Bar ¯16 Button Face

¯6 Window Background ¯17 Button Shadow

¯7 Window Frame ¯18 Disabled Text

¯8 Menu Text ¯19 Button Text

¯9 Window Text ¯20 Inactive Title Bar Text

¯10 Active Title Bar Text ¯21 Button Highlight

If instead, FillCol contains a 3-element vector, it specifies the intensity of the red,
green and blue components of the colour as values in the range 0-255. For example,
(255 0 0) is red and (255 255 0) is yellow. Note that the colour realised depends upon
the capabilities of the display adapter and driver, and the current Windows colour
map.

Chapter 2: A-Z Reference 239

FillCol may also be a vector of 3-element vectors specifying a set of colours for the
constituent parts of the object. For example, a Poly object consisting of four poly-
gons, may have a FillCol property of four 3-element vectors.

Filters Property
Applies To: FileBox

Description

The Filters property is a nested scalar or vector containing a list of filters. Each filter
is a 2-element vector of character vectors which contain a file type mask and a file
type description respectively. The file type descriptions appear in a drop-down
combo box labelled "List Files of Type". When the user selects one of these, the cur-
rently selected directory is searched for files which match the corresponding mask.
The default value of Filters is an empty vector. This gives a file type mask of "*.*"
and a file type description of "All Files (*.*)". Hence an empty vector is equivalent to
(⊂'*.*' 'All Files (*.*)').

FirstDay Property
Applies To: Calendar

Description

The FirstDay property specifies the day that is considered to be the first day of the
week and which appears first in the Calendar.

FirstDay is an integer whose value is in the range 0-6. The default value for FirstDay
depends upon your International Settings, but in most countries is 0 meaning Mon-
day.

Chapter 2: A-Z Reference 240

Fixed Property
Applies To: Font

Description

This property specifies whether or not a font represented by a Font object is fixed-
width or proportional. It is either 0 (fixed-width) or 1 (proportional). There is no
default; the value of this property reflects the characteristic of the selected font.

FixedOrder Property
Applies To: CoolBar

Description

The FixedOrder property specifies whether or not the CoolBar displays CoolBands in
the same order.

FixedOrder is a single number with the value 0 (user may re-order bands) or 1 (user
may not re-order bands); the default is 0.

If FixedOrder is 1, the user may move bands to different rows, but the band order is
static.

FlatSeparators Property
Applies To: TabControl

Description

The FlatSeparators property specifies whether or not separators are drawn between
buttons in a TabControl object. FlatSeparators only affects a TabControl if Style is
'FlatButtons' and is otherwise ignored.

FlatSeparators is a single number with the value 0 (no separators) or 1 (separators);
the default is 0.

Chapter 2: A-Z Reference 241

The pictures below illustrate the effect of FlatSeparators on the appearance of a Tab-
Control object.

Flush Method 135
Applies To: Root

Description

This method forces any objects that have been created but not yet shown to be dis-
played. Normally, Dyalog APL/W buffers the display of new objects unless they are
being created by a callback function. This event can be used to override the buff-
erring.

The Flush method is niladic.

Chapter 2: A-Z Reference 242

Font Object
Purpose: Loads a font resource

Parents ActiveXControl, Animation, Bitmap, Button, ButtonEdit, Calendar,
Combo, ComboEx, CoolBand, DateTimePicker, Edit, Form, Grid,
Group, Label, List, ListView, MDIClient, Metafile, OLEServer,
Printer, ProgressBar, PropertyPage, PropertySheet, RichEdit, Root,
Scroll, Spinner, Static, StatusBar, SubForm, TabBar, TCPSocket,
TipField, ToolBar, ToolControl, TrackBar, TreeView, UpDown

Children Timer

Properties Type, PName, Size, Fixed, Italic, Underline, Weight, Rotate,
CharSet, Data, Handle, KeepOnClose, MethodList, ChildList,
EventList, PropList

Methods Detach, ChooseFont

Events Close, Create, FontOK, FontCancel, Select

Description

This object loads a Windows font into memory ready for use by another object. The
characteristics of the font are specified by its properties as follows :

PName
A character vector containing the name of the font face. The
default is 'System'. Note that case is ignored when you specify
the name, although it will be returned correctly by ⎕WG.

Size An integer that specifies the character height of the font in pixels.

Fixed A boolean value that specifies whether the font is fixed-width (1)
or proportional (0).

Italic A boolean value that specifies whether the font is italicised (1) or
not (0).

Underline A boolean value that specifies whether the font is underlined (1)
or not (0).

Weight An integer in the range 0-1000 that specifies how bold or heavy
the font is (1000 = most bold).

Rotate
A numeric scalar that specifies the angle of rotation of the font in
radians. The angle is measure from the x-axis in a counter-
clockwise direction.

CharSet An integer that specifes the character encoding.

Chapter 2: A-Z Reference 243

When you ask Windows to allocate a font, you may specify as many or as few of
these properties as you wish. Windows actually supplies the font that most closely
matches the attributes you have specified. The matching rules it uses are complex,
and may be found in the appropriate Windows documentation.

The values of the above properties after ⎕WC or ⎕WS reflect the attributes of the font
which has been allocated by Windows, and not necessarily the values you have spec-
ified. Furthermore, it is possible that changing the value of one property will cause
the values of others to be changed.

FontCancel Event 242
Applies To: ActiveXControl, Button, ButtonEdit, Calendar, Combo, ComboEx,

DateTimePicker, Edit, Font, Form, Grid, Group, Label, List,
ListView, PropertyPage, PropertySheet, RichEdit, Root, Spinner,
Static, StatusBar, SubForm, TabBtn, Text, TipField, TreeView

Description

If enabled, this event is reported when the user has pressed the Cancel button or
closed the font selection dialog box that is displayed by the ChooseFont method.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 2-element vector as follows :

[1] Object ref or character vector

[2] Event 'FontCancel' or 242

FontList Property
Applies To: Printer, Root

Description

The FontList property is a read-only property (you cannot set its value) that provides
a list of available fonts.

Chapter 2: A-Z Reference 244

Its value is a vector (1 per font) of 8-element character vectors, each of which is as fol-
lows :

[1] Face name (character vector)

[2] Character height in "points" (integer)

[3] Fixed width or not (boolean)

[4] Italic or not (boolean)

[5] Underline or not (boolean)

[6] Weight (integer)

[7] Angle of rotation (integer)

[8] Character set (see CharSet)

Example:
↑'.'⎕WG'FontList'

System 16 0 0 0 700 0 0
Terminal 12 1 0 0 400 0 255
Fixedsys 15 1 0 0 400 0 0
Roman 37 0 0 0 400 0 255
Script 36 0 0 0 400 0 255
Modern 37 0 0 0 400 0 255
Small Fonts 3 0 0 0 400 0 0
MS Serif 10 0 0 0 400 0 0
WST_Czec 12 1 0 0 700 0 2
WST_Engl 12 1 0 0 700 0 2
WST_Fren 12 1 0 0 700 0 2
WST_Germ 12 1 0 0 700 0 2
WST_Ital 12 1 0 0 700 0 2
WST_Span 12 1 0 0 700 0 2
WST_Swed 12 1 0 0 700 0 2
Courier 13 1 0 0 400 0 0
Serif 13 0 0 0 400 0 0
Causeway 16 1 0 0 700 0 0
Dyalog Alt 16 1 0 0 400 0 0
Dyalog Std 16 1 0 0 400 0 0

Note that the list of fonts obtained from FontList for a Printer object will include
TrueType fonts and printer fonts but will exclude screen fonts. FontList for Root will
include TrueType fonts and screen fonts, but exclude printer-only fonts. The two lists
will therefore (typically) be different.

Chapter 2: A-Z Reference 245

FontObj Property
Applies To: ActiveXContainer, ActiveXControl, Bitmap, Button, ButtonEdit,

Calendar, Combo, ComboEx, DateTimePicker, Edit, Form, Grid,
Group, Label, List, ListView, Menu, MenuBar, MenuItem, Printer,
PropertyPage, PropertySheet, RichEdit, Root, Spinner, Static,
StatusBar, StatusField, SubForm, TabBar, TabBtn, TabControl,
Text, TipField, ToolBar, ToolControl, TrackBar, TreeView

Description

The FontObj property associates a font with an object. It specifies either the name of,
or a ref to, a Font object, or it specifies the attributes of the font directly. The use of
the FontObj property to specify a font directly is supported only for compatibility
with previous releases of Dyalog APL/W and may be removed in the future. The Font
object provides a more efficient mechanism for managing fonts and allows greater
flexibility for drawing and printing graphical text. It is recommended that all fonts be
specified using Font objects and not loaded directly using the FontObj property.

If unspecified, the default value for FontObj is an empty character vector. For most
objects, this setting implies that the font used in the object is inherited from its par-
ent object. However, CoolBar, Menu, MenuBar, StatusBar, TipField, ToolBar, and
ToolControl objects do not inherit their font.

Note that the default value of FontObj for Root is also an empty character vector and
that this implies the Windows default GUI font, which is a Windows user preference
setting.

Note however that it is not currently possible to specify the font for Menu and Men-
uItem objects which are the direct descendants of a MenuBar. Nor is it possible to
specify the font used for the Caption in a Form.

If FontObj specifies a Font object, it is a ref or a simple character vector.

Chapter 2: A-Z Reference 246

If FontObj specifies a font directly, it may be either an empty character vector (this is
its default value) or as an array containing up to 8 elements as follows :

[1] Face name of requested font (character vector)

[2] Character height in pixels (integer)

[3] Fixed width or not (boolean)

[4] Italic or not (boolean)

[5] Underline or not (boolean)

[6] Weight (integer)

[7] Angle of rotation (integer)

[8] Character set (see CharSet)

When you assign a value to the FontObj property of an object, Windows actually
supplies the font that most closely matches the attributes you have specified. The
matching rules it uses are complex, and may be found in the appropriate Windows
documentation. The value of the FontObj property reflects the attributes of the font
which has been allocated by Windows, not the value you originally specified.

A list of available fonts and their attributes may be obtained from the FontList prop-
erty of the Root object ".".

The "Face name" is the name assigned to the font by Windows. The default is
'System'. The face name of the Dyalog APL font is 'APL'. Note that case is
ignored when you specify the name, although it will be returned correctly by ⎕WG.

The size of the font is specified in terms of its height in pixels. If Windows cannot
supply exactly the size you request, it will supply the nearest below that.

A value of 1 in the third element requests a fixed-width font, as opposed to a pro-
portional one. This attribute is given the maximumweighting by Windows in choos-
ing a matching font.

A value of 1 in the fourth and fifth elements requests the font attributes italic and
underlined respectively. Windows will add these attributes to an existing font if they
don't physically exist. For example, you can obtain italic and underlined APL char-
acters from the standard APL font.

The weight is a number in the range 0 to 1000 which specifies how faint or bold the
characters appear. The larger the number, the bolder the font.

The angle of rotation is measured in 1/10ths of a degree from the x-axis in a counter-
clockwise direction. Its default value is 0.

Chapter 2: A-Z Reference 247

FontOK Event 241
Applies To: ActiveXControl, Button, ButtonEdit, Calendar, Combo, ComboEx,

DateTimePicker, Edit, Font, Form, Grid, Group, Label, List,
ListView, PropertyPage, PropertySheet, RichEdit, Root, Spinner,
Static, StatusBar, SubForm, TabBtn, Text, TipField, TreeView

Description

If enabled, this event is reported when the user has pressed the OK button in the font
selection dialog box that is displayed by the ChooseFont method.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 4-element vector as follows :

[1] Object ref or character vector

[2] Event 'FontOK' or 241

[3] Font nested vector

[4] Colour RGB triplet

The font specification in the 3rd element of the event message is a 7-element nested
vector that describes the chosen font. See Font Object for further details.

The colour specification in the 4th element of the event message is a 3-element
integer vector of RGB values for the colour chosen by the user.

Chapter 2: A-Z Reference 248

Form Object
Purpose: This is a top-level window used to contain other objects (controls).

Parents ActiveXControl, Form, OLEClient, OLEServer, Root, SubForm,
TCPSocket

Children ActiveXControl, Animation, Bitmap, BrowseBox, Button,
ButtonEdit, Calendar, Circle, Clipboard, ColorButton, Combo,
ComboEx, CoolBar, Cursor, DateTimePicker, Edit, Ellipse,
FileBox, Font, Form, Grid, Group, Icon, Image, ImageList, Label,
List, ListView, Locator, Marker, MDIClient, Menu, MenuBar,
Metafile, MsgBox, OCXClass, OLEClient, OLEServer, Poly,
Printer, ProgressBar, PropertySheet, Rect, RichEdit, Scroll, SM,
Spinner, Splitter, Static, StatusBar, SubForm, SysTrayItem, TabBar,
TabControl, TCPSocket, Text, Timer, TipField, ToolBar,
ToolControl, TrackBar, TreeView, UpDown

Properties Type, Caption, Posn, Size, Coord, State, Border, Active, Visible,
Event, Thumb, Range, Step, VScroll, HScroll, Sizeable, Moveable,
SysMenu, MaxButton, MinButton, HelpButton, OKButton,
SIPMode, SIPResize, FontObj, BCol, Picture, OnTop, IconObj,
CursorObj, AutoConf, YRange, XRange, Data, TextSize,
EdgeStyle, Handle, Hint, HintObj, Tip, TipObj, Translate,
Accelerator, AcceptFiles, KeepOnClose, Dockable, Docked,
DockShowCaption, DockChildren, UndocksToRoot, MaskCol,
AlphaBlend, Redraw, TabIndex, PageSize, MethodList, ChildList,
EventList, PropList

Methods Detach, GetTextSize, Animate, GetFocus, ShowSIP, ChooseFont,
Wait

Events Close, Create, DragDrop, Configure, ContextMenu, DropFiles,
DropObjects, Expose, Help, KeyPress, GotFocus, LostFocus,
MouseDown, MouseUp, MouseMove, MouseDblClick,
MouseEnter, MouseLeave, MouseWheel, StateChange, DockStart,
DockMove, DockRequest, DockAccept, DockEnd, DockCancel,
Select, FrameContextMenu, DyalogCustomMessage1, FontOK,
FontCancel, VScroll, HScroll, VThumbDrag, HThumbDrag

Chapter 2: A-Z Reference 249

Description

The Posn property specifies the location of the internal top-left corner of the window
relative to the top-left corner of the screen. If the window has a title bar and/or border,
you must allow sufficient space for them. Similarly, the Size property specifies the
internal size of the window excluding the title bar and border. The default for Size is
50% of the screen height and width. The default for Posn places the Form in the
middle of the screen.

Normally, a Form has a title bar, a systemmenu box, a border and maximise and mini-
mise buttons. To disable the SystemMenu box, set SysMenu to 0. To disable one or
both of the maximise/minimise buttons, set MaxButton and/or MinButton to 0.

The HelpButton property specifies that a Question (?) button appears in the title bar
of the Form. However, this does not apply if the Form has a maximise or minimise but-
ton which both take precedence. The user may obtain help by clicking on the Ques-
tion (?) button and then on a control in the Form. It is up to you to provide the help
by responding to the Help event on the control.

By default, a Formmay be moved and resized using the mouse. These actions are
achieved by dragging on the title bar and border respectively. It follows that a Form
that is Moveablemusthave a title bar, and one that is Sizeable must have a border,
regardless of the value of other properties. Also, if you specify any of SysMenu,
MaxButton or MinButton, the window must have a title bar in which to place these
controls. A title bar itself requires a border. To obtain a window without a title bar,
you must therefore set Moveable, SysMenu, MaxButton and MinButton to 0. Note
that setting Caption does not force a title bar on the window.

If Sizeable is 1, the window will have a double-line border, regardless of the values
of other properties. If Sizeable is 0, and any one or more ofMoveable, SysMenu, Max-
Button, MinButton or Border is 1, the window will have a 1-pixel border. Only if all
these properties are 0 will the window be borderless. To obtain a dialog box that may
only be moved or closed, set Border to 2.

Note that the default value for Caption is an empty character vector which results in
a blank title.

To obtain a standard dialog box with 3-dimensional appearance, create a Form with
Border set to 2 and EdgeStyle set to 'Dialog', for example:

'F' ⎕WC 'Form' 'Dialog Box' ('EdgeStyle' 'Dialog')('Border' 2)

The State property has the value 0 if the window is currently displayed in its "nor-
mal" state, 1 if it is currently displayed as an icon, and 2 if it is currently maximised
and displayed full-screen. This property does not just report the current state, but can
be used to set the state under program control.

Chapter 2: A-Z Reference 250

The VScroll and HScroll properties determine whether or not a Form has a vertical
and horizontal scrollbar respectively. These properties are set to ¯1to obtain a scroll-
bar. Their default value is 0 (no scrollbar). VScroll and HScroll may only be set when
the object is created and may not subsequently be changed. The Range property is a
2-element vector that specifies the maximum value for the vertical and horizontal
scrollbars respectively. The PageSize property is a 2-element vector that specifies the
sizes of the thumbs in each scrollbar. The Step property is a 4-element vector that
specifies the sizes of the small and large change. Its first two elements refer to the ver-
tical scrollbar, elements 3 and 4 refer to the horizontal scrollbar. The Thumb property
is a 2-element vector that both reports and sets the position of the thumb in the ver-
tical and horizontal scrollbars respectively. When the user attempts to move the
thumb in one of the scrollbars, the Form generates a VScroll or HScroll event.

VScroll and HScroll cannot be changed using ⎕WS. However, you can make a scroll-
bar disappear by setting the corresponding element of Range to 1, thus allowing you
to dynamically switch the scrollbar off and on. Note however that doing so will
change the size of the Form.

Setting the FontObj property on a Form does not affect the text in its title bar. How-
ever, the value of FontObj will (unless over-ridden) be inherited by all of the objects
within the Form.

The background of the Formmay be coloured using BCol. The default value for
BCol is the Windows Button Face colour unless EdgeStyle is set to 'None' or
'Default'in which case it is the Windows background colour. Alternatively, the
background of a Form can be defined using a Bitmap orMetafile object whose name
is defined by the Picture property. A Metafile is automatically scaled to fit the Form.
A Bitmap can be tiled orscaled. See Picture property for details.

The OnTop property is either 0 or 1. If it is 0, the Form assumes its normal position
within the stack of windows on the screen and is only brought to the front when it
receives the input focus. If OnTop is set to 1, the Form is always brought to the front
even when it doesn't have the focus. If more than one Form has OnTop set to 1, the
stacking order of this set of Forms is defined by the order in which they were created.

A Form can be created as a child of another Form. If so, it has the following char-
acteristics :

l A child Form always appears on top of its parent Form (although it is not
constrained by it)

l When you minimize a parent Form, its child Forms disappear.
l Making the parent Form invisible or inactive has no effect on a Child Form.

Note that the Posn and Size properties of a child Form are expressed in screen coor-
dinates and are not given relative to its parent.

Chapter 2: A-Z Reference 251

Formats Property
Applies To: Clipboard

Description

This is a "read-only" property that identifies the formats in which data is currently
available in the clipboard. It is a vector of character vectors containing the names of
the corresponding Clipboard properties for which data may be obtained using ⎕WG.
In the following example data was copied to the Windows clipboard fromMicrosoft
Excel. This product stores data in CF_Text and the older device-dependent CF_Bit-
map formats. The latter excludes colour map information, so CMap is not available.

'CL' ⎕WC 'Clipboard'
'CL' ⎕WG 'Formats'

Bits CMap Text

FormatString Property
Applies To: ButtonEdit, Edit, Grid, Label, Spinner

Description

The FormatString property specifies one or more ⎕FMT format specifications to be
used to format data in an Grid or single-line Edit. When applied to a Grid, it is either
a simple character vector that specifies the format specification for the entire Grid, or
a vector of character vectors. If it is a vector, its elements are mapped to individual
cells via the CellTypes property. When applied to an Edit object, FormatString must
be a simple character vector.

APL derives the text to be displayed in a cell by calling ⎕FMT with a left argument of
the corresponding element of FormatString and a right argument of the cell value. If
the format specification is invalid, the text displayed is blank.

When a formatted Edit object receives the focus, it redisplays the contents in its raw
(unformatted) form.When the Edit loses the focus, its contents are reformatted. When
the user moves to a formatted Grid cell, the text remains formatted until the user
presses a non-movement key or enters in-cell mode. The data is then redisplayed in
its raw form for editing. Data in the cell is reformatted when the user moves away.

Chapter 2: A-Z Reference 252

In a Grid, formatted data may be aligned vertically using the AlignChar property as
illustrated in the following example.

'F'⎕WC'Form'
'F.G'⎕WC'Grid'(¯50+?10 10⍴100)(0 0)(100 100)
'F.G'⎕WS'FormatString' 'M<(>N<)>F12.3'
'F.G'⎕WS'AlignChar' '.'

FrameContextMenu Event 411
Applies To: Form, SubForm

Description

If enabled, this event is reported when the user clicks and releases the right mouse but-
ton over the non-client area of an object, e.g. the title bar in a Form.

Chapter 2: A-Z Reference 253

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 4-element vector as follows :

[1] Object ref or character vector

[2] Event 'FrameContextMenu' or 411

[3] Y y-position of the mouse (number)

[4] X x-position of the mouse (number)

For further details, see ContextMenu Event.

FStyle Property
Applies To: Circle, Ellipse, Poly, Rect

Description

This property determines how a graphics object is filled. It takes one of the following
values, or, if the object has more than one component, a vector of such values.

FStyle Effect

¯1 hollow (no fill). This is the default.

0 solid fill

1 hatch fill with horizontal lines

2 hatch fill with vertical lines

3 hatch fill with diagonal lines at 135 degrees

4 hatch fill with diagonal lines at 45 degrees

5 hatch fill with horizontal and vertical lines

6 hatch fill with criss-crossing diagonal lines

str
the name of. or a ref to, a Bitmap object which is used to fill the
object.

For example, to fill an object with criss-crossing diagonal lines you would specify
('FStyle' 6). If the object contained two components, you could fill the first
one with criss-crossing diagonal lines, and the second one with a Bitmap called
'YES', with the specification ('FStyle' 6 'YES')

If the size of the Bitmap is 8x8 APL uses a Windows "brush" to fill the object. If not,
it uses "tiling". Filling with a brush is faster.

Chapter 2: A-Z Reference 254

FullRowSelect Property
Applies To: ListView, TreeView

Description

The FullRowSelect property specifies whether or not the entire row is highlighted
when an item in a ListView or a TreeView is selected.

FullRowSelect is a single number with the value 0 (only the item name is high-
lighted) or 1 (the whole row is highlighted); the default is 0.

For a ListView, FullRowSelect only applies if its View property is set to 'Report'.

The picture below illustrates the effect on the appearance of a ListView object, of set-
ting FullRowSelect to 1.

Chapter 2: A-Z Reference 255

GetBuildID Method 192
Applies To: Root

Description

This method is used to obtain the Build ID of a Dyalog APL executable.

The argument to GetBuildID is ⍬ or a single item as follows:

[1] File name character vector

The (shy) result is an 8-element character vector of hexadecimal digits that represents
the Build ID.

If the argument is ⍬, the build id is that of the current version of Dyalog APL that is
running the expression.

Note that although this method is designed to uniquely identify different versions of
Dyalog APL by its check-sum, it may be used to obtain a check-sum for any arbitrary
file.

Examples:
GetBuildID ⍬

38091b76
GetBuildID 'E:\DYALOG81\DYALOG.EXE'

cbf0d376
GetBuildID 'C:\AUTOEXEC.BAT'

4a29334d

Note that if the file does not exist, the result is 00000000.

Chapter 2: A-Z Reference 256

GetCellRect Method 201
Applies To: Grid

Description

This method returns the rectangle associated with a particular cell in a Grid.

The argument to GetCellRect is a 2-element vector as follows:

[1] Row integer

[2] Column integer

The result is a 2-element nested vector. The first element contains the y and x-coor-
dinate of the top-left corner of the cell. The second element contains the height and
width of the cell.

The result is reported in terms of the coordinate system of the Grid object.

GetCommandLine Method 145
Applies To: Root

Description

The GetCommandLine method returns the command line that was used to start the
current Dyalog APL session or application.

The GetCommandLine method is niladic.

The result is a character vector.

Examples
GetCommandLine

"C:\Program Files\Dyalog\Dyalog APL-64 13.2 Unicode\dyalog.exe"

⎕←2 ⎕NQ '.' 'GetCommandLine'
"C:\Program Files\Dyalog\Dyalog APL-64 13.2 Unicode\dyalog.exe"

Note
GetCommandLine only works on Windows, and its use is deprecated in favour of
GetCommandLineArgs, which works on all platforms.

Chapter 2: A-Z Reference 257

GetCommandLineArgs Method 148
Applies To: Root

Description

The GetCommandLineArgs method returns the command and the arguments to the
command that was used to start the current Dyalog APL session or application.

The GetCommandLineArgs method is niladic.

The result is a vector of character vectors. For example:

GetCommandLineArgs
C:\Dyalog10\dyalog.exe -Dw YY_WINDOW=-30

DISPLAY 2 ⎕NQ '.' 'GetCommandLineArgs'
.→---.
| .→---------------------. .→--. .→------------. |
| |C:\Dyalog10\dyalog.exe| |-Dw| |YY_WINDOW=-30| |
| '----------------------' '---' '-------------' |
'∊---'

GetComment Method 222
Applies To: Grid

Description

This method is used to retrieve the comment associated with a cell in a Grid.

The argument to GetComment is a 2-element array as follows:

[1] Row integer

[2] Column integer

For example, the following expression retrieves the comment associated with the cell
at row 3, column 1.

F.C.GetComment 3 1
1 3 Hello 175 100

Note that to retrieve a comment associated with a row or column title, the appropriate
element in the argument should be ¯1.

If there is no comment associated with the specified cell, the result is a scalar 1.

Chapter 2: A-Z Reference 258

GetDayStates Event 266
Applies To: Calendar

Description

If enabled, this event is reported when a Calendar object requires the APL program to
provide day state information for the range of dates it is about to display.

The Calendar object displays day numbers using either the normal or the bold font
attribute. However, it does not store this information beyond the month or months
currently displayed.

When the Calendar control scrolls (and potentially at other times), it generates a Get-
DayStates event to ask you (the APL program) to tell it which of the dates that are
about to be shown, should be displayed using the bold font attribute.

If you wish any dates to be displayed using the bold font attribute, you must attach a
callback function to this event which returns day state information in its result.

By default, all dates are displayed using the normal font attribute, so you need only
do this if you want any dates highlighted in bold.

You may not disable or nullify the operation that caused GetDayStates to fire by set-
ting the action code for the event to ¯1 or by returning 0 from a callback function.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 5-element vector as follows :

[1] Object ref or character vector

[2] Event 'GetDayStates' or 266

[3] First Date an integer (IDN)

[4] Last Date an integer (IDN)

[5] Bold Dates an integer vector of IDNs.

When the callback function is invoked, the 3rd and 4th elements of the event message
contain IDNs for the first and last date in the range of dates that the Calendar object
is about to display. The 5th element of the event message contains those IDNs within
this range of dates that the Calendar control already knows are to be displayed using
the bold font attribute. This will typically be empty.

Chapter 2: A-Z Reference 259

The result of your callback function should be the same event message with only the
5th element modified in any way. This should contain the IDNs of the dates (within
the range specified by the 3rd and 4th elements) that are to be displayed using the
bold font attribute.

Example:
Suppose that you keep a variable BOLD_DATES in the Calendar object. This variable
is a vector of IDN values that defines those dates that the user has somehow iden-
tified as special and that you wish to display in bold, The following callback func-
tion could be applied:

∇ MSG←DAYSTATES MSG;MASK;⎕IO
[1] ⍝ Callback function for the GetDayStates event
[2] ⍝ Object (⊃MSG) contains a variable BOLD_DATES
[3] ⍝ that defines ALL the IDNs that are to be
displayed in bold
[4] ⍝ We need to return only those that fall within the
range
[5] ⍝ of dates that are about to be displayed by the
Calendar
[6] ⎕CS⊃MSG
[7] ⎕IO←1
[8] MASK←BOLD_DATES≥3⊃MSG
[9] MASK←MASK∧BOLD_DATES≤4⊃MSG
[10] MSG[5]←⊂MASK/BOLD_DATES

∇

You may also set the font attribute for particular days by calling GetDayStates as a
method.

For example, to set the bold attribute for IDN 36048 (11 September 1998) in a Cal-
endar object called 'F.CAL1', you could execute the expression:

F.CAL1.CetDayStates 36048 36048 36048

To clear the bold attribute for the same day:

F.CAL1.CetDayStates 36048 36048 <⌈>

Note that the Calendar object will ignore any IDNs you specify that are outside the
range of dates that it is currently displaying.

Chapter 2: A-Z Reference 260

GetEnvironment Method 510
Applies To: Root

Description

This method is used to obtain information about one or more parameters that were
specified in the APL command line, yourWindows registry, or defined as envi-
ronment variables. If a value is defined in several places (for example, MAXWS in
the command line overriding MAXWS in the registry), GetEnvironment follows
exactly the same logic as is used by Dyalog APL itself and so obtains the same value.

The argument to GetEnvironment is a single item as follows:

[1] Parameter name(s) see below

Parameter names is simple character vector or vector of character vectors specifying
one or more parameters.

The result is a simple character vector or a vector of character vectors.

Examples:

GetEnvironment 'DYALOG'
C:\Dyalog82

GetEnvironment ⊂'DYALOG' 'APLNID'
C:\Dyalog82 0

Note that you may use GetEnvironment to obtain the values of your own arbitrary
parameters given on the APL command line, defined in APL.INI, or specified as envi-
ronment variables.

GetEnvironment is not supported by DYALOG.DLL because it does not use param-
eters.

Chapter 2: A-Z Reference 261

GetEventInfo Method 551
Applies To: OCXClass, OLEClient

Description

This method is used to obtain information about a particular event or set of events
supported by a COM object.

For each event supported by a COM object, the author will have registered the data
type of its result (if it has a result), a help message or description of the event
(optional) and the name and data type of each of its parameters. These event param-
eters make up the array returned by ⎕DQ or supplied as an argument to your callback
function. The GetEventInfo method returns this information.

The argument to GetEventInfo is a single item as follows:

[1] Event name(s) see below

Event name(s) is a simple character vector or a vector of character vectors specifying
one or more names of events supported by the object.

The result is a nested vector with one element per event name. Each element of this
vector is itself a vector of 2-element character vectors. For each event, the first item
describes the help message or description (if any) registered for the event and the data
type of its result. Each of the remaining elements contains a parameter name and its
corresponding data type.

Example:
CLNAME←'Microsoft Multimedia Control, Version 6.0'
'MM' ⎕WC 'OCXClass' CLNAME

MM.EventList
Done BackClick PrevClick NextClick PlayClick ...

DISPLAY ↑MM.GetEventInfo 'Done'
.→---.
↓ .→-----------------------------. .→------. |
| |Occurs when an MCI command ...| |VT_VOID| |
| '------------------------------' '-------' |
| .→---------. .→--------------. |
| |NotifyCode| |VT_PTR to VT_I2| |
| '----------' '---------------' |
'∊---'

Note that if the event does not produce a result, the data type of the result is reported
as 'VT_VOID'.

Chapter 2: A-Z Reference 262

GetFocus Method 511
Applies To: ActiveXControl, Animation, Button, ButtonEdit, Calendar,

ColorButton, Combo, ComboEx, CoolBar, DateTimePicker, Edit,
Form, Grid, Group, Label, List, ListView, MDIClient, ProgressBar,
PropertyPage, PropertySheet, RichEdit, Root, Scroll, SM, Spinner,
Static, StatusBar, SubForm, TabBar, TabControl, ToolBar,
ToolControl, TrackBar, TreeView, UpDown

Description

This method is used to obtain the name of the object that currently has the input
focus.

The GetFocus method is niladic.

The result is a simple character vector. An empty result indicates that no Dyalog APL
GUI object has the input focus.

GetItemHandle Method 313
Applies To: TreeView

Description

This method is used to obtain the window handle of a particular item in a TreeView
object.

The argument for GetItemHandle is a single item as follows:

[1] Item number Integer.

Item number is the index of the item concerned.

The result is an integer containing the window handle of the item.

Chapter 2: A-Z Reference 263

GetItemPosition Method 323
Applies To: ListView

Description

This method is used to obtain the position of a particular item in a ListView object.

The argument for GetItemPosition is a single item as follows:

[1] Item number Integer.

Item number is the index of the item concerned.

The result is a 2-element vector containing the position of the item.

GetItemState Method 306
Applies To: ListView, TreeView

Description

This method is used to obtain the status of a particular item in a ListView or TreeV-
iew object.

The argument for GetItemState is a single item as follows:

[1] Item number Integer.

Item number is the index of the item concerned. It is Index Origin dependent.

The result indicates the state of the item as the sum of one or more of the following
codes:

¯1 Error (most likely that the Item number is invalid)

1 Item has the focus

2 Item is selected

8 Item is highlighted for dropping

16 Item is displayed in bold text

32 Item is expanded

64 Item is or has been expanded

4096 Item is checked. See "CheckBoxes" on page 118

Chapter 2: A-Z Reference 264

GetMethodInfo Method 552
Applies To: OCXClass, OLEClient

Description

This method is used to obtain information about a particular method or set of meth-
ods supported by a COM object.

For each method supported by a COM object the author will have registered a help
message or description of the method (this is in fact optional), the data type of its
result (if it has a result), and the name and data type of each of the parameters that
must be supplied when you invoke it. The GetMethodInfo method returns this infor-
mation.

The argument to GetMethodInfo is a single item as follows:

[1] Method name(s) see below

Method name(s) is a simple character vector or a vector of character vectors spec-
ifying one or more names of methods supported by the object.

The result is a nested vector with one element per method name. Each element of this
vector is itself a vector of 2-element character vectors. For each method, the first item
describes the help message or description (if any) registered for the method and the
data type of its result. Note that if the event does not produce a result, the data type of
the result is reported as 'VT_VOID'. Each of the remaining elements contains a
parameter name and its corresponding data type.

Example
CLNAME←'Microsoft Multimedia Control, Version 6.0'
'MM' ⎕WC 'OCXClass' CLNAME
MM.MethodList

AboutBox Refresh OLEDrag

DISPLAY ↑ MM.GetMethodInfo 'AboutBox'
.→--------------.
↓ .⊖. .→------. |
| | | |VT_VOID| |
| '-' '-------' |
'∊--------------'

Chapter 2: A-Z Reference 265

GetMinSize Method 275
Applies To: Calendar

Description

This method is used to obtain the minimum size that you must specify for a Calendar
object for it to display a complete month.

The GetMinSize method is niladic.

The (shy) result of the method is a 2-element numeric vector containing the minimum
height and width required for the object to display a complete month.

GetParentItem Method 312
Applies To: TreeView

Description

This method is used to obtain the index of the parent of a particular item in a TreeV-
iew object.

The argument for GetParentItem is a single item as follows:

[1] Item number Integer.

Item number is the index of the item concerned.

The result is an integer containing the index of the parent item.

Chapter 2: A-Z Reference 266

GetPropertyInfo Method 550
Applies To: OCXClass, OLEClient

Description

This method is used to obtain information about a particular property or set of prop-
erties supported by a COM object.

For each property supported by a COM object, the author will have registered the
property name, its data type, and an optional help message or description of the prop-
erty. GetPropertyInfo returns this information.

The argument to GetPropertyInfo is a single item as follows:

[1] Property name(s) see below

Property name(s) is a simple character vector or a vector of character vectors spec-
ifying one or more names of properties supported by the object.

The result is a nested vector with one element per property name. Each element of
this vector is itself a 2-element vector of character vectors containing the data type
and help message for the corresponding property.

Example
CLNAME←'Microsoft Multimedia Control, Version 6.0'
'MM' ⎕WC 'OCXClass' CLNAME
MM.PropList

Type DeviceType AutoEnable PrevVisible ...

DISPLAY ↑MM.GetPropertyInfo 'PrevVisible'
.→--.
↓ .→--. .→------. |
| |Determines if the Prev button is visible.| |VT_VOID| |
| '---' '-------' |
| .→-. .→------. |
| |⌈P| |VT_BOOL| |
| '--' '-------' |
'∊--'

If the data type of a property is VT_USERDEFINED, it means that the property may
assume one of a set of values defined by a type list. In this case, the name of the type
list is returned in place of the string "VT_USERDEFINED". Further information can
be obtained using GetTypeInfo with this name as a parameter.

Chapter 2: A-Z Reference 267

GetTextSize Method 92
Applies To: ActiveXControl, Animation, Bitmap, Button, ButtonEdit, Calendar,

ColorButton, Combo, ComboEx, CoolBar, DateTimePicker, Edit,
Form, Grid, Group, Label, List, ListView, MDIClient, Printer,
ProgressBar, PropertyPage, RichEdit, Root, Scroll, SM, Spinner,
Static, StatusBar, SubForm, TabBar, TabControl, ToolBar,
ToolControl, TrackBar, TreeView, UpDown

Description

The GetTextSize method obtains the size of the bounding rectangle of a text item in
a given font. The result is given in the co-ordinate system of the object in question.
This method is useful for positioning Text objects.

GetTextSize duplicates the functionality of the TextSize property. It is recommended
that you use GetTextSize instead of TextSize which may be removed in a future
release of Dyalog APL.

The argument to GetTextSize is a 1 or 2-element array as follows:

[1] Text item character array

[2] Font name character vector

When you invoke GetTextSize you give the text item in whose size you are inter-
ested and, optionally, the name of a Font object. The text itemmay be a simple scalar,
a vector or a matrix. If the Font is omitted, the result is given using the current font for
the object in question.

Examples
'F'⎕WC'Form'
F.GetTextSize'Hello World'

3.385416667 10.7421875

'FNT1' ⎕WC 'Font' 'Arial' 72
F.GetTextSize'Hello World' '#.FNT1'

18.75 65.4296875

F.Coord←'Pixel'
F.FontObj←'FNT1'
F.GetTextSize'Hello World'

16 77

Chapter 2: A-Z Reference 268

GetTipText Event 325
Applies To: ListView, TreeView

Description

If enabled, this event is reported by a TreeView or ListView object just before it dis-
plays a tip for a specific row.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 5-element vector as follows :

[1] Object ref or character vector

[2] Event 'GetTipText' or 325

[3] Item index Integer (⎕IO dependant)

[4] SubItem index Integer (⎕IO dependant, currently always equal to
⎕IO)

[5] TipText The text to be displayed.

Modifying and returning the 5th element of the argument to the callback function
allows the application to change the displayed tip.

The text can be set to a character array of rank 2 or less.

The default processing for the event is to display the default tip (if there is one).

GetTypeInfo Method 553
Applies To: OCXClass, OLEClient

Description

This method is used to obtain information about a type list supported by a COM
object.

The argument to GetTypeInfo is a single item as follows:

[1] Type List name(s) see below

[2] Value (usually) numeric

[3] Description character vector

Chapter 2: A-Z Reference 269

Type List name(s) is a simple character vector or a vector of character vectors spec-
ifying one or more names of type lists supported by the object.

The result is a nested vector with one element per Type List. Each element of this vec-
tor is itself a 3-element vector of character vectors made up as follows:

[1] Name of Constant character vector

[2] Value (usually) numeric

[3] Description character vector

GetVisibleRange Method 262
Applies To: Calendar

Description

This method is used to obtain the range of dates that is currently visible in a Calendar
object.

The GetVisibleRange method is niladic.

The result is a 2-element integer vector containing the first and last dates currently
displayed by the object, reported as IDNs.

GotFocus Event 40
Applies To: ActiveXControl, Animation, Button, ButtonEdit, Calendar,

ColorButton, Combo, ComboEx, DateTimePicker, Edit, Form, Grid,
Group, List, ListView, MDIClient, ProgressBar, PropertyPage,
RichEdit, Scroll, Spinner, SubForm, TrackBar, TreeView

Description

If enabled, this event is generated when the user has moved the keyboard focus to a
new object by clicking the left mouse button, pressing TAB, or using a cursor key.

Chapter 2: A-Z Reference 270

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 3-element vector as follows :

[1] Object ref or character vector

[2] Event 'GotFocus' or 40

[3] Object name character vector (name of object which previously had
the focus)

The third element (object name) is empty if the focus was obtained from another
application window.

The GotFocus event is generated after the focus has changed. The default processing
is therefore to take no action. However, if you disable the event by setting its action
code to ¯1, or inhibit it by returning a 0 from your callback function, the focus is
automatically restored to the object (or external application) that had lost it.

GreetBitmap Method 138
Applies To: Root

Description

This method is used to display or remove a bitmap, typically during initialisation of a
Dyalog APL runtime application.

The argument to GreetBitMap is ⍬ or a 2 element vector as follows:

[1] Display 0 = off, 1 = on.

[2] Bitmap file name Character vector.

If the argument is ⍬, the bitmap is removed.

The image may also be displayed initially by setting parameter: greet_bitmapon the
command line, e.g.:

c:\myapp\dyalogrt greet_bitmap=mylogo myws

The image is displayed until either an untrapped error occurs, causing the interpreter
to (attempt to) display the session window, or the GreetBitmap method is called.

Chapter 2: A-Z Reference 271

Grid Object
Purpose: Spreadsheet object for displaying and editing data.

Parents ActiveXControl, CoolBand, Form, Group, PropertyPage, SubForm

Children Bitmap, BrowseBox, Button, Circle, ColorButton, Combo, Cursor,
DateTimePicker, Edit, Ellipse, FileBox, Font, Icon, Image, Label,
Marker, Menu, MsgBox, OCXClass, Poly, Rect, Spinner, Text,
Timer, TrackBar

Properties Type, Values, Posn, Size, FCol, BCol, Coord, Border, Active,
Visible, Event, VScroll, HScroll, SelItems, Sizeable, Dragable,
FontObj, CursorObj, AutoConf, Index, YRange, XRange, Data,
Attach, TextSize, EdgeStyle, Handle, Hint, HintObj, Tip, TipObj,
FormatString, RowTitles, ColTitles, CurCell, TitleWidth,
CellHeights, CellWidths, TitleHeight, CellFonts, Input, CellTypes,
AutoExpand, CellSelect, ResizeRows, ResizeCols,
ResizeRowTitles, ResizeColTitles, ClipCells, InputModeKey,
InputMode, GridFCol, GridBCol, ShowInput, CellSet,
RowTitleFCol, ColTitleFCol, RowTitleDepth, ColTitleDepth,
RowTitleAlign, ColTitleAlign, OverflowChar, AlignChar,
GridLineFCol, GridLineWidth, RowLineTypes, ColLineTypes,
EnterReadOnlyCells, RowTitleBCol, ColTitleBCol,
RowTreeDepth, RowTreeStyle, RowTreeImages, ColSortImages,
SelectionColor, SelectionColorAlpha, SelectionBorderWidth,
HighlightHeaders, Translate, Accelerator, AcceptFiles,
KeepOnClose, Redraw, InputProperties, TabIndex,
AlwaysShowSelection, AlwaysShowBorder, RowHiddenDepth,
MethodList, ChildList, EventList, PropList

Methods Detach, ChooseFont, GetTextSize, Animate, GetFocus, ShowSIP,
DelRow, DelCol, SetCellType, RowChange, ColChange, Undo,
SetCellSet, RowSetVisibleDepth, ColSorted, DuplicateRow,
DuplicateColumn, CellFromPoint, GetCellRect, LockRows,
LockColumns, AddComment, DelComment, GetComment

Events Close, Create, FontOK, FontCancel, DragDrop, Configure,
ContextMenu, DropFiles, DropObjects, Expose, Help, KeyPress,
GotFocus, LostFocus, MouseEnter, MouseLeave, GridKeyPress,
CellChange, CellMove, AddRow, AddCol, CellError, CellOver,
CellDown, CellUp, CellDblClick, CellChanged, GridSelect,
Expanding, Retracting, SetRowSize, SetColSize, GridCut,
GridCopy, GridPaste, GridDelete, GridPasteError, GridDropSel,
GridCopyError, IndexChanged, ShowComment, HideComment,
ClickComment, Select

Chapter 2: A-Z Reference 272

Description

The Values property is a matrix whose elements are displayed in the cells of the Grid.
An element (and therefore a cell) may contain a single number, a single character, a
character vector or a character matrix.

The CellHeights property specifies the height of each of the rows of the spreadsheet.
It may be a single value which applies to all rows, or a vector with one element per
row. The CellWidths property determine the width of each column of the spread-
sheet. It too may be a single value or a vector with one element per column.

The RowTitles property is either an empty character vector (the default) or a vector of
character vectors that specify row titles displayed to the left of the cells in the Grid. If
RowTitles is not specified, the Grid labels each row with its row number. The
ColTitles property is similar and is used to specify column headings. If ColTitles is
not specified, the Grid displays "standard" spreadsheet column headings A-Z, then
AA-AZ and so forth.

The TitleHeight property specifies height of the column headers. If this is set to 0, the
column titles will not be displayed. Similarly, the TitleWidth property specifies the
width of the row titles and again a value of zero disables the row titles.

The FontObj property may be used to specify the font to be used for the Grid as a
whole, including the titles. The CellFonts property may be used to specify fonts for
individual cells.

The FCol and BCol properties may each specify a single colour for the Grid as a
whole, or may specify a vector of colours whose elements are mapped to individual
cells through the CellTypes property.

The CellFonts property is either a character vector or a vector of character vectors that
specifies the name of a single font object to be used for all cells in the Grid, or a vec-
tor of character vectors that specifies a set of font objects that are mapped to individ-
ual cells through the CellTypes property.

The Input property is a character vector that specifies the name of an object which is
to be associated with every cell in the Grid, or a vector of names whose elements are
mapped to individual cells through the CellTypes property. These objects may be of
type Button, ColorButton, Combo, Edit, Label, Spinner or TrackBar. In addition, the
Input property may specify instances of OCXClass objects (ActiveX controls) and
NetType objects (.NET classes).

If the Input property is empty (the default) the user may browse the data in the spread-
sheet but may not alter it. Furthermore, no feedback is provided as to which is the cur-
rent cell. If the Input property specifies the name of an object that is the child of the
Grid itself, this object floats from cell to cell as the user moves around the spread-
sheet, and the current cell is identified by its presence.

Chapter 2: A-Z Reference 273

If the Input property specifies the name of an external object (that is, an object that is
nota child of the Grid), the contents of the current cell are copied into that object as
the user moves around the spreadsheet. In addition, the current cell is identified by a
thick border. In either case, the associated object is used to impose formatting and val-
idation.

If the Input property specifies the name of a Label object, that object is used to
impose formatting, but the data is protected and may not be changed. If the Label is a
child of the Grid, it moves from cell to cell, and its characteristics (Border, FCol,
BCol and FontObj) can be used to identify the current cell. If the Label is an external
one, no visual feedback is provided; even though the current cell (reflected by the
CurCell property) changes as the user moves around the Grid.

If the Input property specifies one or more instances of OCXClass objects (ActiveX
controls) and NetType objects (.NET classes), the InputProperties property is used to
map the Values property of the Grid to specific properties of the external object.

The CellTypes property is either an empty numeric matrix (the default) or an integer
matrix of the same shape as Values. If specified, each element of
CellTypes determines the index into various properties, including the FCol, BCol,
CellFonts and Input properties, to be used for the corresponding cell. For example, if
an element in CellTypes is 3, the 3rd element of FCol is used for the foreground
colour of the corresponding cell, the 3rd element of BCol specifies the background
colour, and so forth.

The CurCell property may be used to set or query the current cell. The current cell is
the cell which the user has picked by clicking the mouse over it or by using the cur-
sor keys. CurCell is a 2-element vector containing the current cell's row number and
column number respectively and is ⎕IOdependent. The Index property specifies the
row and column number of the cell in the top-left corner of the Grid. It too is
⎕IOdependent.

The AutoExpand property is a 2-element boolean vector which specifies whether (1)
or not (0) new rows and columns are added when the user presses the corresponding
cursor key when at the end of the block of cells. Its default value is (0 0).

The Grid object reports a CellDown event when the user depresses a mouse button
over a cell. The event message contains the row and column address of the cell in
question which is ⎕IOdependent. It also reports a similar CellUp event when the
mouse button is released and a CellDblClick event when it is double-clicked. The
number of the mouse button and the state of the shift keys are also reported.

When the user moves to another cell, the Grid object reports a CellMove event. This
simply reports the address of the new cell and may be used to take some appropriate
action when a particular cell is picked. If the user alters the data in a cell and then
attempts to move to another, the Grid reports a CellChange event. This can be used
to perform validation.

Chapter 2: A-Z Reference 274

Alternatively, the Grid may report a CellChanged event which occurs after the
Values property has been updated with the new cell contents. This may be used to
perform immediate recalculation.

The AddRow event is generated if the current cell is in the last row of the Grid and
the user presses Cursor Down. By default, this operation adds a new row to the Grid,
but you can attach a callback to the AddRow and selectively disable this default
action if required. The AddCol event works in a similar manner for columns.
Although the user has no direct means of inserting a row or column, your application
can do this by calling AddRow or AddCol as a method on the Grid object. Typically
this would be done in response to the user selecting a MenuItem or pressing a Button.

The ColChange, RowChange, DelRow, DelCol and Undo methods allow your appli-
cation to perform these corresponding operations.

The Grid object maintains a buffer of the most recent 8 changes made by the user
since the Values property was last set by ⎕WC or ⎕WS. Your application can restore
these changes one by one by calling the Undo method. The Undo method restores
the most recent change made by the user and removes that change from the undo
stack. It is therefore not possible to "undo an undo".

The Grid supports the selection of a block or blocks of cells using the mouse and/or
the keyboard. The ability to select a range of cells is determined by the CellSelect
property. When the user performs a selection , the Grid generates a GridSelect event.
The range of cells currently selected is given by the SelItems property

If a block of cells has been selected, the user may delete the contents, and cut or copy
the contents of the cells to the clipboard by pressing Delete, Shift+Delete or Ctrl+I-
nsert respectively. These operations also generate GridDelete, GridCut and Grid-
Copyevents which you can selectively disable using a callback function. You can
also perform these operations under program control by calling them as methods.

If more than one block of cells has been selected, these operations are honoured only
if the blocks begin and end on the same rows or begin and end on the same columns.
If so, the data placed in the clipboard is the result of joining the blocks horizontally
or vertically as appropriate.

The user may paste data from the clipboard into a Grid by pressing Shift+Insert. Data
is pasted into the currently selected block of cells, or, if there is no selection, data is
pasted starting at the current cell (CurCell). The operation also generates a
GridPaste event, and, if the operation cannot proceed, a GridPasteError event.

If you move the mouse pointer over any of the four edges of a selected block of cells,
the cursor changes to an arrow. You may now click and drag the border of the
selected cells with the mouse.

Chapter 2: A-Z Reference 275

If you press the Ctrl key at the same time, the contents of the selected cells are copied
to the new location, replacing the values in the block of cells onto which they are
dropped. Otherwise, the operation is treated as a move and the original block of cells
is emptied. This operation also generates a GridDropSel event. You may only move
or copy a single block of cells in this way.

The user may be permitted to resize the rows and/or columns of a Grid. This is con-
trolled by the ResizeRows and ResizeCols properties whose default values are 0. To
allow the user to resize, set either or both to 1. You can also specify a boolean vector
to allow specific rows/columns to be resized while others are fixed. Two additional
properties named ResizeRowTitles and ResizeColTitles determine whether or not the
user may alter the width of the row titles and the height of the column titles.

If resizable, the cursor changes to a double-heads arrow when the user moves the
mouse pointer over the lines between the row and/or column titles. The user may
click and drag with the mouse to the desired size. The user may also double-click.
This causes the row or column to be resized to fit the data. Both operations generate a
SetColSize, or SetRowSize event.

When you edit data in a Grid, the editing behaviour and the action of the cursor
movement keys is determined by the InputMode and InputModeKey properties.

The GridFCol property specifies the colour of all the grid lines. Alternatively, the
GridLineFCol, GridLineWidth, RowLineTypes and ColLineTypes properties may
specify the appearance for individual grid lines.

The GridBCol property specifies the colour used to fill the area between the end of
the last column of data and the right edge of the Grid and between the bottom row of
data and the bottom edge of the Grid.

The RowTitleFCol and ColTitleFCol properties specify the colours to be used for the
row and column titles respectively.

The ClipCells property determines whether or not the Grid displays partial cells. The
default is 1. If you set ClipCells to 0, the Grid displays only complete cells and auto-
matically fills the space between the last visible cell and the edge of the Grid with
the GridBCol colour.

The CellSet property is a boolean array that marks which cells are set (i.e. have
values) and which are empty. This allows you to edit large numeric matrices which
contain empty cells without a severe workspace penalty.

The Hscroll and Vscroll properties specify whether or not horizontal and vertical
scrollbars are displayed. Either property may be given the value ¯3 which forces the
corresponding scrollbar to appear always. VScroll and HScroll may only be set when
the object is created and may not subsequently be changed.

Chapter 2: A-Z Reference 276

The Grid object supports comments in a manner that is consistent with the way that
comments are handled by Microsoft Excel.. If a comment is associated with a cell, a
small red triangle is displayed in its top right corner. When the user rests the mouse
pointer over a commented cell, the comment is displayed as a pop-up with an arrow
pointing back to the cell to which it refers. The comment disappears when the mouse
pointer is moved away. This is referred to as tip behaviour. Comments may also be
associated with row and column titles.

Grid comments are managed by a set of methods, namely AddComment, Del-
Comment, GetComment, ShowComment, HideComment and ClickComment.

You may lock individual rows and columns using the LockRows and LockColumns
methods. This facility is however not supported in combination with hierarchical
rows and/or columns which are specified by RowTitleDepth and ColTitleDepth.

The Grid can display a TreeView like interface on the Row titles. In this mode, the
Grid automatically shows and hides row of data as the end user expands and con-
tracts nodes of the tree.

The RowTreeDepth property is used to specify the depth of rows in the Grid.

The appearance of the tree is determined by the RowTreeStyle property.

User defined bitmaps can be used instead of the default Images by setting the Row-
TreeImages property.

The Grid generates Expanding and Retracting events when the user interacts with
the tree.

The RowSetVisibleDepth method can be used to set the visible depth of the tree.

GridBCol Property
Applies To: Grid

Description

This property specifies the colour used to fill the area between the end of the last col-
umn of data and the right edge of the Grid and between the bottom row of data and
the bottom edge of the Grid.

GridBCol may be a 3-element vector of integer values in the range 0-255 which refer
to the red, green and blue components of the colour respectively, or it may be a scalar
that defines a standard Windows colour element (see BCol for details). Its default
value is 0 which obtains the colour defined forWindow Background.

Chapter 2: A-Z Reference 277

GridCopy Event 191
Applies To: Grid

Description

If enabled, this event is reported when the user presses Ctrl+Insert and there are
selected cells in the Grid. The default action of the event is to copy the contents of
the selected block of cells to the clipboard. You may disable this effect entirely by
setting the action code of the event to ¯1. You may also disable the copy operation
by returning 0 from a callback function.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 5-element vector as follows:

[1] Object ref or character vector

[2] Event 'GridCopy' or 191

[3] Start 2-element integer vector or matrix containing the row, column
address(es) of the top left cell(s) in the selected block(s)

[4] End 2-element integer vector or matrix containing the row, column
address(es) of the bottom right cell(s) in the selected block

[5] Values

2-element nested vector. The first element is a matrix
containing the values of the selected block(s) of cells. This is
the data that will be copied to the clipboard. The second
element is a Boolean matrix containing the values of the
CellSet property for the selected block(s) of cells.

Note that the values of Start and End are sensitive to the index origin, ⎕IO.

If more than one block of cells is selected, Start and End are matrices whose rows
identify the start and end cells of each of the selected blocks, and Data is the contents
of the selected blocks catenated along the appropriate dimension according to their
relative positions in the Grid.

You may copy cells under program control by calling GridCopy as a method.

Chapter 2: A-Z Reference 278

To copy a specific block of cells to the clipboard whether or not they are selected,
you must specify the Start and End parameters. For example, the following expres-
sion will copy the 3x3 block of cells in the top-left of the Grid (⎕IO is 1) to the clip-
board:

Gridname.GridCopy (1 1) (3 3)

If you omit these parameters, the currently selected block of cells will be copied to
the clipboard. If no cells are selected, the entire contents of the Grid will be copied.
i.e.

Gridname.GridCopy ⍬

The data copied to the clipboard is registered in Dyalog (APL internal), Wk3 (Lotus),
XlTable (Excel) and tab/new-line delimited text formats.

Chapter 2: A-Z Reference 279

GridCopyError Event 196
Applies To: Grid

Description

If enabled, this event is reported when the user presses Ctrl+Insert and there is more
than one block of selected cells in the Grid and the blocks are non-conformable. The
default action of the event is to generate a Beep. Setting the action code of this event
to ¯1, or returning a 0 from a callback function attached to it, disables the Beep.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 5-element vector as follows:

[1] Object ref or character vector

[2] Event 'GridCopyError' or 196

[3] Zilde

[4] Zilde

[5] Start
A 2-column integer matrix whose rows identify the address of
the first cell (row, column) of each of the selected blocks of
cells.

[6] End
A 2-column integer matrix whose rows identify the address of
the last cell (row, column) of each of the selected blocks of
cells.

Note that the values of Start and End are sensitive to the index origin, ⎕IO.

Chapter 2: A-Z Reference 280

GridCut Event 190
Applies To: Grid

Description

If enabled, this event is reported when the user presses Shift+Delete and there are
selected cells in the Grid. The default action of the event is to copy the contents of
the selected block(s) of cells to the clipboard and then to empty the selected cells.
You may disable this effect entirely by setting the action code of the event to ¯1.
You may also disable the cut operation by returning 0 from a callback function.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 5-element vector as follows:

[1] Object ref or character vector

[2] Event 'GridCut' or 190

[3] Start 2-element integer vector or matrix containing the row, column
address(es) of the top left cell(s) in the selected block(s)

[4] End 2-element integer vector or matrix containing the row, column
address(es) of the bottom right cell in the selected block

[5] Data

2-element nested vector. The first element is a matrix
containing the values of the selected block(s) of cells. This is
the data that will be copied to the clipboard. The second
element is a Boolean matrix containing the values of the
CellSet property for the selected block(s) of cells.

Note that the values of Start and End are sensitive to the index origin, ⎕IO.

If more than one block of cells is selected, Start and End are matrices whose rows
identify the start and end cells of each of the selected blocks, and Data is the contents
of the selected blocks catenated along the appropriate dimension according to their
relative positions in the Grid.

The data copied to the clipboard is registered in Dyalog (APL internal), Wk3 (Lotus),
XlTable (Excel) and tab/new-line delimited text formats.

Chapter 2: A-Z Reference 281

GridDelete Event 193
Applies To: Grid

Description

If enabled, this event is reported when the user presses Delete and there are selected
cells in the Grid. The default action of the event is to empty the selected cells. You
may disable this effect entirely by setting the action code of the event to ¯1. You
may also disable the delete operation by returning 0 from a callback function.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 4-element vector as follows:

[1] Object ref or character vector

[2] Event 'GridDelete' or 193

[3] Start 2-element integer vector or matrix containing the row, column
address(es) of the top left cell(s) in the selected block(s)

[4] End 2-element integer vector or matrix containing the row, column
address(es) of the bottom right cell(s) in the selected block(s)

Note that the values of Start and End are sensitive to the index origin, ⎕IO.

If more than one block of cells is selected, Start and End are matrices whose rows
identify the start and end cells of each of the selected blocks.

GridDropSel Event 195
Applies To: Grid

Description

If enabled, this event is reported when the user drag/drops a selected block of cells in
the Grid. The default action is that the contents of the selected cells replace the
values in the block of cells onto which they are dropped and this block now becomes
selected.

You may disable the drag/drop facility entirely by setting the action code of the
event to ¯1. You may also disable an individual drag/drop operation by returning 0
from a callback function.

Chapter 2: A-Z Reference 282

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 6-element vector as follows :

[1] Object ref or character vector

[2] Event 'GridDropSel' or 195

[3] Start 2-element integer vector containing the row, column address
of the top left cell in the selected block

[4] Size 2-element integer vector containing the number of rows and
columns in the selected block

[5] Target
2-element integer vector containing the row/column address
of the top left cell onto which the selected block is being
dropped

[6]
Shift
State

sum of shift key codes (number)
1 = Shift key is down
2 = Ctrl key is down

[7]
Undo
flag 0 or 1

[8] Values Matrix containing the values of the selected block of cells.
This is the data that will replace the values in the target cells.

[9]
CellSet
flags

Boolean Matrix containing the values of the CellSet property
for the selected block of cells. This will replace the values of
the CellSet property of the target cells.

The shift state in element 6 is intended to allow the APL programmer to implement
an insert operation instead of a copy ormove operation if required.

You may copy the contents of one block of cells to another by calling GridDropSel
as a method. If so, you need only specify the Start, Size and Target parameters. Note
that the result block becomes selected.

The Undo flag is always 1 if the event was generated by the user.

Chapter 2: A-Z Reference 283

GridFCol Property
Applies To: Grid

Description

The GridFCol property specifies the colour of the grid lines in a Grid object

GridFCol may be a 3-element vector of integer values in the range 0-255 which refer
to the red, green and blue components of the colour respectively, or it may be a scalar
that defines a standard Windows colour element (see BCol for details). . Its default
value is 0 which obtains the colour defined forWindow text.

The grid lines may be removed by setting GridFCol to the same colour as the back-
ground colour of the cells, which is defined by Bcol.

GridKeyPress Event 24
Applies To: Grid

Description

If enabled, this event is generated when the user presses and releases a key in a Grid
cell.

The GridKeyPress is reported on the Grid, after the KeyPress event, which is reported
on the Input object associated with the current cell.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 6-element vector as follows :

[1] Object ref or character vector

[2] Event 'GridKeyPress' or 24

[3] Input Code character scalar or vector

[4] ASCII code integer scalar

[5] Key Number integer scalar

[6] Shift State integer scalar

[7] Input Object character vector

For a full description of elements [3-6], see KeyPress event.

Chapter 2: A-Z Reference 284

The 7th element of the event message contains the name of the Input object asso-
ciated with the current cell and on which the corresponding KeyPress event has been
reported.

If a callback function on the KeyPress event returns 0, the GridKeyPress event is not
fired. If a callback function on the KeyPress event returns a modified KeyPress mes-
sage, the GridKeyPress event is fired with the modified message and not the original
one.

The default action of the GridKeyPress event is to pass its message back to the appro-
priate Input object to be actioned. If a callback on GridKeyPress returns 0, the key-
stroke will be ignored.

GridLineFCol Property
Applies To: Grid

Description

The GridLineFCol property specifies the colours of the grid lines in a Grid object.
GridLineFCol should be used if different coloured grid lines are required. If all the
grid lines are the same colour, use GridFCol.

GridLineFCol may be a scalar or a vector. Each itemmay be a 3-element vector of
integer values in the range 0-255 which refer to the red, green and blue components
of the colour respectively, or a scalar that defines a standard Windows colour element
(see Bcol for details). Note that a single RGB triplet must be enclosed.

The default value of GridLineFCol is an empty numeric vector (⍬). If so, all the grid
lines are drawn using the single colour specified by GridFCol.

Elements of GridLineFCol are allocated to individual grid lines via the Row-
LineTypes and ColLineTypes properties.

See also: GridLineWidth.

Chapter 2: A-Z Reference 285

GridLines Property
Applies To: ListView

Description

The GridLines property specifies whether or not lines are displayed between items in
a ListView object. GridLines applies only if the value of the View property is
'Report'.

GridLines is a single number with the value 0 (no lines are displayed) or 1 (lines are
displayed); the default is 0.

The picture below illustrate the effect on the appearance of a ListView object, of set-
ting GridLines to 1.

GridLineWidth Property
Applies To: Grid

Description

The GridLineWidth property specifies the widths in pixels of the grid lines in a Grid
object.

GridLineWidth may be an integer scalar or a vector. Its default value is an empty
numeric vector (⍬). If so, grid lines are drawn 1-pixel wide.

Grid lines are always displayed so that 1 pixel is drawn within the cell. If the width is
greater than 1 pixel, the additional pixels are drawn between the cells.

Chapter 2: A-Z Reference 286

If an element of GridLineWidth is 0, the corresponding grid lines are not drawn.

Elements of GridLineWidth are allocated to individual grid lines via the Row-
LineTypes and ColLineTypes properties.

See also: GridLineFCol.

GridPaste Event 192
Applies To: Grid

Description

If enabled, this event is reported when the user presses Shift+Insert and there is data
in the clipboard that is in a suitable format for the Grid. The default action of the
event is to copy the contents of the clipboard into the currently selected block of
cells, or, if no cells are selected, into the block of cells starting at the current cell (Cur-
Cell). Note that if there is a selected range of cells and the shape of the data being
pasted does not exactly match the size of the selected range, the system generates a
GridPasteError event in addition to the GridPaste event.

You may disable the paste facility entirely by setting the action code of the event to
¯1. You may also disable an individual paste operation by returning 0 from a call-
back function.

Chapter 2: A-Z Reference 287

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 6-element vector as follows :

[1] Object ref or character vector

[2] Event 'GridPaste' or 192

[3] Values
New values (taken from the clipboard) which are to
replace the existing values of the block of cells defined
by Start and End.

[4] CellSet flags
Boolean Matrix containing the new values of the
CellSet property for the block of cells defined by Start
and End.

[5] Start

2-element integer vector containing the row, column
address of the top left cell the selected block. If there is
no selection, this is the address of the current cell
(CurCell).

[6] End

2-element integer vector containing the row, column
address of the bottom right cell in the selected block. If
there is no selection, this is the address of the bottom
right cell of the block starting at the current cell that
will be overwritten

You can replace the contents of a contiguous block of cells with the data in the clip-
board, or with an arbitrary matrix of values, by calling GridPaste as a method.

If you call GridPaste with an argument of ⍬, the data is taken from the clipboard;
otherwise the data to be pasted is specified by the Values and CellSet flags param-
eters.. If you omit Start, data is pasted into the currently selected range of cells. If
there are no cells selected, data is pasted starting at the current cell (CurCell). In
either case, the block of replaced cells becomes selected.

Chapter 2: A-Z Reference 288

GridPasteError Event 194
Applies To: Grid

Description

If enabled, this event is reported when the user presses Shift+Insert and there is data
in the clipboard, but the system is unable to paste the data into the Grid. This occurs
if there is a currently selected block of cells whose shape does not match the shape of
the data in the clipboard. It also occurs if there is no selected block of cells, and past-
ing the data in starting at the current cell (CurCell) would overflow the Grid. Setting
the action code of this event to ¯1, or returning a 0 from a callback function attached
to it, has no effect.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 6-element vector as follows:

[1] Object ref or character vector

[2] Event 'GridPasteError' or 194

[3] Values Contents of the clipboard.

[4] CellSet flags Boolean array indicating which elements of the
clipboard data are empty.

[5] Start

2-element integer vector containing the row, column
address of the top left cell in the selected block. If there
is no selection, this is the address of the current cell
(CurCell).

[6] End

2-element integer vector containing the row, column
address of the bottom right cell in the selected block. If
there is no selection, this is the address of the bottom
right cell of the block starting at the current cell that
will be overwritten

[7]
Error
Number 4 (RANK ERROR) or 5 (LENGTH ERROR)

Chapter 2: A-Z Reference 289

GridSelect Event 165
Applies To: Grid

Description

If enabled, this event is reported when the user performs or cancels the selection of a
block of cells in a Grid object. This event is reported after the selection has changed.
Setting its action code to ¯1 has no effect and the result of a callback function cannot
be used to alter the selection that has been made. You may however control the user's
ability to make selections using the CellSelect property.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 4-element vector as follows :

[1] Object ref or character vector

[2] Event 'GridSelect' or 165

[3] Start 2-element integer vector or matrix containing the row, column
address(es) of the top left cell(s) in the selected block(s)

[4] End 2-element integer vector or matrix containing the row, column
address(es) of the bottom right cell(s) in the selected block

Note that the values of Start and End are sensitive to the index origin, ⎕IO.

If the selection is made with the mouse, the GridSelect event is reported when the left
mouse button is released. If the selection is made using the cursor keys, the Grid-
Select event is reported when the Shift key is released.

The GridSelect event is also generated when the current selection is cancelled by
clicking on a cell with the mouse or by pressing a cursor key.

Chapter 2: A-Z Reference 290

GripperMode Property
Applies To: CoolBand

Description

The GripperMode property specifies whether or not the CoolBand has a gripper bar
which is used to reposition and resize the CoolBand within its parent CoolBar.

GripperMode is a character vector with the value 'Always' (the default),
'Never' or 'Auto'.

If GripperMode is 'Always' , the CoolBand displays a gripper bar even if it is the
only CoolBand in the CoolBar.

If GripperMode is 'Never' , the CoolBand does not have a gripper bar and may not
be directly repositioned or resized by the user.

If GripperMode is 'Auto' , the CoolBand displays a gripper bar only if there are
other CoolBands in the same CoolBar.

Chapter 2: A-Z Reference 291

Group Object
Purpose: This object is used to group a related set of controls together

visually, and to impose "radio-button" behaviour.

Parents ActiveXControl, CoolBand, Form, Group, PropertyPage, SubForm,
ToolBar, ToolControl

Children Animation, Bitmap, Button, ButtonEdit, Calendar, Circle,
ColorButton, Combo, ComboEx, Cursor, DateTimePicker, Edit,
Ellipse, Font, Grid, Group, Image, ImageList, Label, List, ListView,
Locator, Marker, Metafile, Poly, ProgressBar, Rect, RichEdit, Scroll,
SM, Spinner, Splitter, Static, SubForm, Text, Timer, TipField,
TrackBar, TreeView, UpDown

Properties Type, Caption, Posn, Size, Coord, Border, Active, Visible, Event,
Sizeable, Dragable, FontObj, FCol, BCol, Picture, CursorObj,
AutoConf, YRange, XRange, Data, Attach, EdgeStyle, Handle,
Hint, HintObj, Tip, TipObj, Translate, Accelerator, AcceptFiles,
KeepOnClose, Redraw, TabIndex, MethodList, ChildList,
EventList, PropList

Methods Detach, GetTextSize, Animate, GetFocus, ShowSIP, ChooseFont

Events Close, Create, FontOK, FontCancel, DragDrop, Configure,
ContextMenu, DropFiles, DropObjects, Expose, Help, KeyPress,
GotFocus, LostFocus, MouseDown, MouseUp, MouseMove,
MouseDblClick, MouseEnter, MouseLeave, MouseWheel, Select

Description

A Group is displayed as an empty box with a border around it whose appearance is
defined by the EdgeStyle property. The Caption property defines a string of text that
is displayed in the top left border. The default value is an empty vector.

A Group will be resized if its parent Form or Group is resized. It can also be resized
directly by the user if its Sizeable property is set to 1. By default, when a Group is
resized, it automatically adjusts the size and position of its children to maintain the
same proportions within it as before. The resizing of a Group and its children can be
controlled using the AutoConf property or by enabling the Configure event (31).

Chapter 2: A-Z Reference 292

HAlign Property
Applies To: Text

Description

This property determines the horizontal alignment of text in a Text object. It is either
a single integer value, or, if the Text object contains several components, a cor-
responding vector of such values.

These may be:

0 left
aligned

the left edge of the bounding box of the text is aligned on the x-
co-ordinate specified by the Points property.

1 centre
aligned

the centre of the bounding box of the text is aligned on the x-co-
ordinate specified by the Points property.

2 right
aligned

the right edge of the bounding box of the text is aligned on the
x-coordinate specified by the Points property.

Chapter 2: A-Z Reference 293

Handle Property
Applies To: ActiveXControl, Animation, Button, ButtonEdit, Calendar,

ColorButton, Combo, ComboEx, CoolBar, Cursor, DateTimePicker,
Edit, Font, Form, Grid, Group, Icon, ImageList, Label, List,
ListView, MDIClient, Menu, MenuBar, Metafile, OLEClient,
OLEServer, Printer, ProgressBar, PropertySheet, RichEdit, Scroll,
SM, Spinner, Static, StatusBar, SubForm, TabBar, TabControl,
ToolBar, ToolControl, TrackBar, TreeView, UpDown

Description

This is a read-only property that reports the handle associated with an object. For a
visual object, such as a Form or a Button, this is the window handle. For a Printer, it
is the printer device context.

This handle allows you to access the corresponding object directly with Windows
API functions via ⎕NA. This facility must be used with care and the responsibility for
its behaviour is entirely yours. Do NOT use it to delete an object. This will cause
APL to crash.

An example of the use of the Handle property is to set tab stops in a List object. This
is illustrated by the following function:

∇ obj TABSTOPS stops;I;LB_SETTABSTOPS;SetTabStops;sink;args
[1] ⍝ Sets the tabstops in the List Box OBJ to be at
[2] ⍝ stops Horizontal Dialog units.
[3] ⍝ Sends LB_SETTABSTOPS (402) to the List Box
[4] ⍝ See Windows SDK for Details.
[5]
[6] I←obj ⎕WG'Items'
[7]
[8] LB_SETTABSTOPS←402
[9] 'SetTabStops'⎕NA'U4 USER32.C32|SendMessageA U4 U4 U4 <U4[]'
[10]
[11] args←(obj ⎕WG'Handle') LB_SETTABSTOPS (⍴,stops)(,stops)
[12] sink←SetTabStops args
[13]
[14] obj ⎕WS'Items'I

∇

Chapter 2: A-Z Reference 294

HasApply Property
Applies To: PropertySheet

Description

The HasApply property is a boolean value that specifies whether or not a Prop-
ertySheet has an Apply button. Its default value is 1. Note that an Apply button is
only actually used if Style is 'Standard'.

HasButtons Property
Applies To: TreeView

Description

The HasButtons property is a boolean value and specifies whether or not buttons are
shown in a TreeView object. If HasButtons is 1 (the default) a square button is dis-
played to the left of each parent item label. If the item is expanded (i.e. is children are
visible) the button contains a minus sign. If the item is not expanded, (i.e. its children
are hidden) the button contains a plus sign. The user can cause a parent item to
expand or collapse by clicking this button.

HasCheckBox Property
Applies To: DateTimePicker

Description

Specifies whether or not a checkbox is displayed alongside the value in a Date-
TimePicker.

HasCheckBox is a single number with the value 0 (the default) or 1. If HasCheckBox
is 1, the user may set or clear the checkbox to indicate whether or not the date/time
displayed in the object is to apply.

If the checkbox is not set, the DateTimePicker is considered to be empty (the contents
will be grayed out) and the value returned by the DateTime property is zilde. Note
that HasCheckBox may only be set when the object is created.

Chapter 2: A-Z Reference 295

HasEdit Property
Applies To: BrowseBox

Description

Specifies whether or not a BrowseBox has an edit field.

HasEdit is a single number with the value 0 (the default) or 1. If HasEdit is 1, the user
may type in the name of a folder or other resource that is the target of the BrowseBox.
If HasEdit is 0, the user must browse to it.

HasHelp Property
Applies To: PropertyPage, PropertySheet

Description

The HasHelp property is a boolean value For a PropertySheet, it determines whether
or not the PropertySheet has a Help button. for a PropertyPage, HasHelp determines
whether or not the Help button is active when the PropertyPage is the current page. If
the HasHelp property of a PropertyPage is 0, the Help button on the parent Prop-
ertySheet will be temporarily disabled when that PropertyPage is displayed.

HasLines Property
Applies To: TreeView

Description

The HasLines property specifies whether or not tree lines are drawnin a TreeView
object. It is a single integer with the value 0, 1 or 2:

0 No tree lines

1 Tree lines are drawn at all levels except the top level

2 Tree lines are drawn at all levels

The user can cause a parent item to expand or collapse by clicking on its cor-
responding tree line.

Chapter 2: A-Z Reference 296

HasTicks Property
Applies To: TrackBar

Description

The HasTicks property specifies whether or not tick marks are drawn in a TrackBar
object. It is boolean value with a default value of 0.

The position of the tick marks in the TrackBar is determined by the TickAlign prop-
erty.

HasToday Property
Applies To: Calendar, DateTimePicker

Description

The HasToday property specifies whether or not the Today date is displayed in the
bottom left corner of a Calendar object or in the dop-down calendar of a Date-
TimePicker.

HasToday is a single number with the value 0 (the date is not shown) or 1 (the date is
shown); the default is 1.

See also CircleToday property.

Header Property
Applies To: ListView

Description

The Header property is boolean and specifies whether or not a ListView object dis-
plays column titles. Its default value is 1. Header applies only if the View property is
'Report'. The column titles are defined by the ColTitles property and their align-
ment by the ColTitleAlign property.

Note that Header may only be set by ⎕WC and may not subsequently be changed.

Chapter 2: A-Z Reference 297

HeaderImageIndex Property
Applies To: ListView

Description

The HeaderImageIndex property is an integer vector that specifies the images to be
displayed alongside each column heading in a ListView object in Report View. Each
positive element of HeaderImageIndex specifies an index into the ImageList object
specified by the HeaderImageList property. The special values ¯1 and ¯2 specify the
standard Sort Up and Sort Down images respectively.

HeaderImageList Property
Applies To: ListView

Description

The HeaderImageList property specifies the name of or ref to an ImageList object that
contains images to be displayed alongside each column heading in a ListView object
in Report View.

Chapter 2: A-Z Reference 298

Help Event 400
Applies To: ActiveXControl, Animation, Button, ButtonEdit, Calendar, Circle,

ColorButton, Combo, ComboEx, CoolBar, DateTimePicker, Edit,
Ellipse, Form, Grid, Group, Image, Label, List, ListView, Marker,
MDIClient, Poly, ProgressBar, PropertyPage, Rect, RichEdit, Scroll,
SM, Spinner, Static, StatusBar, SubForm, TabBar, Text, ToolBar,
ToolButton, ToolControl, TrackBar, TreeView, UpDown

Description

If enabled, this event is reported when the user clicks on an object which has a call-
back defined for this event, the user having previously clicked on the Question (?)
button in the title bar of the parent Form. The presence of the Question (?) button is
determined by the value of the HelpButton property.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 4-element vector as follows :

[1] Object ref or character vector

[2] Event 'Help or 400

[3] Y-coordinate Number

[4] X-coordinate Number

The y and x-coordinates refer to the position of the mouse pointer in the object which
was clicked on, and are reported in the coordinate system of that object.

HelpButton Property
Applies To: Form, PropertySheet, SubForm

Description

This is a Boolean property that specifies whether or not a Question (?) button appears
in the title bar of a Form or SubForm. However, this does not apply if the Form has a
maximise or minimise button which both take precedence. The user may obtain help
by clicking on the Question (?) button and then on a control in the Form. It is up to
you to provide the help by responding to the Help event on the control. The default
value of HelpButton is 0.

Chapter 2: A-Z Reference 299

HelpFile Property
Applies To: ActiveXControl, OCXClass, OLEClient

Description

The Helpfile property is a read-only property that reports the pathname of a Windows
help file associated with a particular COM object.

For an OCXClass or OLEClient object, the HelpFile property is read-only.

HideComment Event 220
Applies To: Grid

Description

If enabled, a HideComment event is generated just before a comment window is hid-
den as a result of the user moving the mouse-pointer away from a commented cell.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 4-element vector as follows :

[1] Object ref or character vector

[2] Event 'HideComment' or 224

[3] Row integer

[4] Column integer

You may prevent the comment from being hidden by returning 0 as the result of a
callback function.

Note that if the comment window relates to a row or column title, the value reported
in element [3] or [4] of the event message is ¯1.

Invoked as a method, HideComment is used to hide a comment that has previously
been displayed by ShowComment. For example, the following expression hides the
comment associated with the cell at row 2, column 1.

F.G.HideComment 2 1

If HideComment is called with an argument of ⍬, all comments are hidden.

Chapter 2: A-Z Reference 300

HighlightHeaders Property
Applies To: Grid

Description

The HighlightHeaders property is a Boolean value (default 1) that specifies whether
or not the appropriate row and column titles in a Grid are highlighted corresponding
to the currently selected block of cells.

Hint Property
Applies To: Animation, Button, ButtonEdit, Calendar, ColorButton, Combo,

ComboEx, DateTimePicker, Edit, Form, Grid, Group, Label, List,
ListView, MDIClient, MenuItem, ProgressBar, PropertyPage,
PropertySheet, RichEdit, Scroll, SM, Spinner, Static, StatusBar,
SubForm, TabBar, ToolBar, ToolButton, TrackBar, TreeView,
UpDown

Description

The Hint property is a character vector that specifies a help message that is to be dis-
played when the user positions the mouse pointer over the object. The Hint is dis-
played in the object specified by its HintObj property. A StatusField is often used for
this purpose.

HintObj Property
Applies To: Animation, Button, ButtonEdit, Calendar, ColorButton, Combo,

ComboEx, DateTimePicker, Edit, Form, Grid, Group, Label, List,
ListView, MDIClient, MenuItem, ProgressBar, PropertyPage,
PropertySheet, RichEdit, Root, Scroll, SM, Spinner, Static,
StatusBar, SubForm, TabBar, ToolBar, ToolButton, TrackBar,
TreeView, UpDown

Description

The HintObj property is a character vector or ref that specifies the name of , or a ref
to, an object in which the "help" message defined by the Hint property is to be dis-
played. This message is displayed when the user positions the mouse pointer over the
object. The Hint is displayed by automatically setting the Caption or Text property
of the object named by HintObj.

Chapter 2: A-Z Reference 301

The following types of object can therefore be used to display Hints: Button, Edit,
Combo, Group, Form, Label, Menu, MenuItem, StatusField, SubForm and Text. For a
StatusField that has both Caption and Text properties, the text property is used for dis-
playing hints.

When the user moves the mouse pointer away from the object, the Caption or Text
property of the object specified by HintObj is reset to an empty vector.

Note that if HintObj is empty, its value is inherited from its parent. Thus setting Hin-
tObj on a Form defines the default location for displaying Hints for all the controls in
that Form. Setting HintObj on Root defines the default location for hints for the
entire application.

HotSpot Property
Applies To: Cursor

Description

This property specifies the point within a Cursor object that registers the cursor's posi-
tion over another object. The mouse position, which is reported by various events, is
actually the position of the cursor's HotSpot over the object in question.

HotSpot is a 2-element numeric vector that specifies the y-position and x-position of
the hotspot within the cursor. A value of (0 0) specifies the top-left corner of the cur-
sor; (31 31) specifies the bottom right corner of the cursor. The default value of Hot-
Spot is (15 15).

HotTrack Property
Applies To: TabControl

Description

The HotTrack property specifies whether or not the tabs or buttons in a TabControl
object (which are represented by TabButton objects), are automatically highlighted
by the mouse pointer.

HotTrack is a single number with the value 0 (no highlighting) or 1. The default is 0.

If HotTrack is 1 and the Style property of the TabControl is 'Tabs' or
'Buttons', the text defined by the Caption property of the TabButton is high-
lighted when the mouse pointer is placed over the tab or button. If Style is
'FlatButtons', the button is highlighted by being raised.

The value of HotTrack is effective only when the object is created with ⎕WC.

Chapter 2: A-Z Reference 302

HScroll Property
Applies To: Combo, ComboEx, Edit, Form, Grid, ListView, RichEdit, Scroll,

StatusBar, SubForm, TabBar, ToolBar, TrackBar, UpDown

Description

For most objects to which it applies, this property determines whether or not a hor-
izontal scrollbar is provided.

HScroll may only be set when the object is created with ⎕WC andmay not sub-
sequently be changed with ⎕WS or assignment.

When applied to a Combo, or to an Edit object with Style'Single' (i.e. a single-
line edit field), the value 0 inhibits scrolling, and prevents the user from entering
more data when the field is full. If instead it has the value ¯2, the field is scrollable,
and the length of data that may be entered is not limited by the length of the field.

When applied to an Edit object with Style'Multi' (i.e. a multi-line text box), the
value 0 inhibits scrolling, and causes individual lines to be "word-wrapped". The
values ¯2 and ¯1 enable sideways scrolling, and permit individual lines to exceed
the width of the object. The value ¯1means that a horizontal scrollbar is provided.

For a Scroll object, the scrollbar is horizontal if HScroll is ¯1 and vertical if HScroll
is 0. For a Form, a horizontal scrollbar is provided if HScroll is set to ¯1. The default
value is 0 (no scrollbar).

For a StatusBar, TabBar or ToolBar with Align set to Top or Bottom, HScroll deter-
mines whether or not a horizontal scrollbar is provided and how the object positions
its children. If HScroll is 0 (the default) the object organises its children in multiple
rows and does not provide a scrollbar. If HScroll is ¯1 or ¯2, the object organises its
children in a single row and provides a mini scrollbar to allow those positioned
beyond the right edge of the object to be scrolled into view. If HScroll is ¯1, the
scrollbar is always shown. If HScroll is ¯2, it is only shown when needed.

For a Grid, HScroll may be 0 (no horizontal scrollbar), ¯1 (scrollbar is displayed
when required), ¯2 (same as ¯1) or ¯3 (scrollbar is always displayed).

Chapter 2: A-Z Reference 303

HScroll Event 39
Applies To: Form, SubForm

Description

If enabled, this event is generated when the user attempts to move the thumb in a hor-
izontal scrollbar in a Form or SubForm. This event occurs only in a Form whose
HScroll property is set to ¯1 and is distinct from the Scroll event that is generated by
a Scroll object. The event may be generated in one of three ways:

l dragging the thumb.
l clicking in one of the "arrow" buttons situated at the ends of the scrollbar.

This is termed a small change, the size of which is defined by Step[3].
l clicking in the body of the scrollbar. This is termed a large change, the size

of which is defined by Step[4].

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 4-element vector as follows:

[1] Object ref or character vector

[2] Event 'HScroll' or 39

[3] Scroll Type numeric

[4] Position numeric

The value of Scroll Type is 0 (drag), 1 or ¯1 (small change) or 2 or ¯2 (large change).
The sign indicates the direction.

The value of Position is the new (requested) position of the thumb. Notice however,
that the event is generated before the thumb is actually moved. If your callback func-
tion returns a scalar 0, the position of the thumb will remain unaltered.

Chapter 2: A-Z Reference 304

HThumbDrag Event 442
Applies To: Form, SubForm

Description

If enabled, this event is generated when the user attempts to drag the thumb in a hor-
izontal scrollbar in a Form or SubForm. This event occurs only in a Form or SubForm
whose HScroll property is set to ¯1 and is distinct from the Scroll event that is gen-
erated by a Scroll object.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 3-element vector as follows:

[1] Object ref or character vector

[2] Event 'HThumbDrag' or 442

[3] Position numeric

The value of Position is the new (requested) position of the Thumb. Setting the
action code of this event to ¯1, or returning a 0 from a callback function attached to
it, has no effect.

Chapter 2: A-Z Reference 305

Icon Object
Purpose: This object defines an icon.

Parents ActiveXControl, CoolBand, Form, Grid, ImageList, ListView,
OLEServer, Printer, ProgressBar, PropertyPage, PropertySheet,
RichEdit, Root, StatusBar, SubForm, SysTrayItem, TCPSocket,
ToolBar, ToolControl, TrackBar, TreeView, UpDown

Children Timer

Properties Type, File, Bits, CMap, Mask, Style, KeepBits, Size, Event, Data,
Handle, Accelerator, KeepOnClose, CBits, MethodList, ChildList,
EventList, PropList

Methods Detach, FileRead, FileWrite

Events Close, Create, Select

Description

The File property specifies the name of an icon file (.ICO. .GIF or .PNG), or the name
of a DLL or EXE file and the identity of the icon within it.

The Style property identifies the size of the icon and must be 'Large' or
'Small'. The former specifies a 32x32 icon and is the default; the latter specifies a
16x16 icon. The size of the icon is not embedded within the icon data, so it is essen-
tial to specify Style correctly. Note that a single file may contain both sizes of an
icon. Style is only relevant when loading an Icon from file.

If the value of the File property is set by ⎕WS, no immediate action is taken, but the
corresponding file may subsequently be read or written using the FileRead or FileW-
rite methods.

Prior to Windows XP, icon images contained fewer than 256 colours and each pixel
was either transparent or opaque.The images in such Icons are represented by the
Bits, Mask and CMap properties.

Windows XP introduced 32-bit icons . These are 24-bit images with an 8-bit alpha
channel which specifies the degree of transparency of each pixel. The pixels in these
Icons are represented by the CBits property.

CBits is a rank-2 numeric array whose dimensions represent the rows and columns of
pixels in the Icon. The values in CBits represent the colour and of each pixel and also
its transparency.

Chapter 2: A-Z Reference 306

Bits is an integer matrix whose elements define the colours of each pixel in the icon
in terms of their (0-origin) indices into CMap. When the icon is displayed on the
screen, the way in which these colours combine with those currently displayed on
the screen (the background) is specified by Mask. This is a boolean matrix of the
same size as Bits. The following table shows how the colour of each resulting pixel is
determined.

Bits Colour 0 Colour

Mask 0 1 1

Pixel Colour Background New Colour

If an element of Mask is 0, the corresponding element of Bits defines the colour of the
resulting pixel that is displayed on the screen. If an element of Mask is 1, the result-
ing pixel that is displayed on the screen is either the current background colour or is
a new colour chosen by MS-Windows to be visible against the background. A non
rectangular icon is obtained by setting those elements of Bits and Mask that you
want to exclude from the shape to be 0 and 1 respectively.

The size of Bits is restricted by the capabilities of the current display driver. Mask
must have the same shape as Bits.

An Icon is used by setting the IconObj property or Picture property of another object
to its name or ref.

Chapter 2: A-Z Reference 307

IconObj Property
Applies To: Form, MDIClient, Root, SubForm, SysTrayItem, TabBar, ToolBar

Description

This property is used to specify a large and small icon for a Form or SubForm, or for
the Root object which represents your application as a whole. Its value is either a sin-
gle ref or character scalar or vector containing the name of, or ref to, an Icon object, or
a 2-element vector of character vectors or refs that specifies 2 Icon objects.

If empty (the default value), the standard "Dyalog APL GUI" icon is used.

The large and small icons are supplied to the Operating System which uses them as
and when is appropriate. Normally, the large icon is of size 32x32 and the small icon
is 16x16. If you specify an icon of a different size, the Operating System will scale it
as appropriate.

The icon associated with a Form is displayed when the Form is minimised. The icon
associated with '.' is displayed when the user presses Alt+Tab to toggle between
applications. In both cases, the text shown underneath or alongside the icon is
defined by the Caption property.

For an MDIClient, the IconObj property has no direct use, but is inherited by all its
child SubForms. Thus if you want all your child SubForms to use the same icon, you
need only define it once for the MDIClient.

Chapter 2: A-Z Reference 308

Idle Event 130
Applies To: Root

Description

If enabled, this event is generated whenever APL looks to see if there is an event on
the queue and finds it empty. Its purpose is to allow an application to perform some
background processing when the user is not doing anything. It is unwise to use this
event directly from the Session as it will occur repeatedly and may lock you out.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function is a 2-element vector as follows:

[1] Object ref or character vector

[2] Event 'Idle' or 130

IDNToDate Method 263
Applies To: Calendar, DateTimePicker, Root

Description

This method is used to convert a date from an IDN into ⎕TS format (year, month,
day). The corresponding day of the week is also obtained.

The argument to IDNToDate is a single item as follows:

[1] IDN Integer

The result is a 4-element integer vector containing the year, month, day, and week-
day corresponding to the IDN that was specified.

The value of the 4th element, weekday, is an integer in the range 0-6 that specifies on
which day of the week the specified date falls (0=Monday).

Example
F.C.IDNToDate 36048

1998 9 11 4

Chapter 2: A-Z Reference 309

Image Object
Purpose: Positions bitmaps and icons within an object.

Parents ActiveXControl, Bitmap, Form, Grid, Group, Metafile, Printer,
PropertyPage, Static, StatusBar, SubForm, ToolBar, ToolControl

Children Timer

Properties Type, Points, Coord, Visible, Event, Dragable, Picture, OnTop,
AutoConf, Data, EdgeStyle, Size, Accelerator, AcceptFiles,
KeepOnClose, MethodList, ChildList, EventList, PropList

Methods Detach

Events Close, Create, DragDrop, MouseDown, MouseUp, MouseMove,
MouseDblClick, Help, Select

Description

The Points property specifies the co-ordinates of one or more points at which the spec-
ified graphical objects are to be drawn.

The Picture property specifies the name(s) of Bitmap, Icon orMetafile object(s) that
are to be drawn. It may be a simple character vector or a vector of vectors.

To draw a single graphic picture, the Picture property is a simple character vector
specifying the name of a Bitmap, Icon orMetafile object. Points is either a 2-element
vector or a 1-row, 2-column matrix whose elements specify the y-coordinate and x-
coordinate respectively at which the object is to be drawn.

To draw the same picture at several different positions, the Picture property is a sim-
ple character vector specifying the name of the Bitmap, Icon orMetafile object.
Points is either a 2-column matrix of y-coordinates and x-coordinates, or a nested vec-
tor whose first element contains the y-coordinates and whose second element con-
tains the x-coordinates.

To draw several different pictures, the Picture property is a vector of character vectors
specifying the names of several Bitmap, Icon and/or Metafile objects. Points is a 2-
column matrix or 2-element nested vector as described above.

Setting the EdgeStyle property causes the picture to be surrounded by the appropriate
border. For example, setting EdgeStyle to 'Plinth' produces a button-like appear-
ance.

Chapter 2: A-Z Reference 310

Setting the Size property causes the picture to be scaled to fit within the specified rec-
tangle. It is only necessary to specify Size when an Image is used to draw a Metafile
object. For a Bitmap or Icon, Size defaults to the size of the object being drawn.

The Dragable property specifies whether or not the Image can be dragged and
dropped using the mouse.

Examples:
First make a Form

'F' ⎕WC 'Form'

Then make two Bitmaps :

'YES' ⎕WC 'Bitmap' 'C:\WDYALOG\WS\YES'
'NO' ⎕WC 'Bitmap' 'C:\WDYALOG\WS\NO'

Display the "YES" Bitmap at (20,10)

'F.I' ⎕WC 'Image' (20 10)('Picture' 'YES')

Display the "YES" Bitmap at (20,10) and (20,50)

'F.I' ⎕WC 'Image' (20(10 50))('Picture' 'YES')

Display the "YES" Bitmap at (20,10) and the "NO" Bitmap at (20,50)

'F.I' ⎕WC'Image'(20(10 50))('Picture' 'YES' 'NO')

ImageCount Property
Applies To: ImageList

Description

The ImageCount property is a read-only property that reports the number of images in
an ImageList object. It is an integer scalar.

Chapter 2: A-Z Reference 311

ImageIndex Property
Applies To: ButtonEdit, ComboEx, CoolBand, ListView, Menu, MenuItem,

TabButton, ToolButton, TreeView

Description

For a ComboEx, ListView or TreeView, the ImageIndex property maps bitmapped
images in an ImageList to items. ImageIndex is an integer vector whose length is the
same as the number of items in the object. See also SelImageIndex

For a CoolBand, MenuItem, TabButton or ToolButton, ImageIndex specifies the pic-
ture to be displayed in the object. In these cases, ImageIndex is a single integer value.

ImageIndex is ⎕IO dependent.

ImageList Object
Purpose: The ImageList object represents a set of bitmapped images.

Parents ActiveXControl, ButtonEdit, CoolBand, CoolBar, Form, Group,
ListView, OLEServer, PropertyPage, Root, SubForm, TabControl,
TCPSocket, ToolBar, ToolControl, TreeView

Children Bitmap, Cursor, Icon, Timer

Properties Type, Size, Event, Data, Handle, Translate, ImageCount, Masked,
MapCols, KeepOnClose, MethodList, ChildList, EventList,
PropList

Methods Detach

Events Close, Create

Chapter 2: A-Z Reference 312

Description

An ImageList object represents an array of bitmapped images which are used to
depict items in a ListView or TreeView object, or the images in a CoolBar, Menu,
TabControl or ToolControl.

Making an ImageList is a 2-step process. First, you create an (empty) ImageList spec-
ifying its Size and Masked properties. The former establishes the size of each of the
bitmapped images in the array. The Masked property specifies whether the ImageList
is to contain opaque or transparent images. Note that these properties must be estab-
lished when the ImageList is created by ⎕WC and may not subsequently be changed
using ⎕WS.

Next, you create a series of Bitmap or Icon objects as children of the ImageList. As
you make each one, APL adds the corresponding image (or images) to the ImageList
object. If the size of each of the Bitmap or Icon objects is equal to the Size of the
ImageList itself, each child object corresponds to an image in the ImageList. How-
ever, if you add an object whose width is an exact multiple of the width of the
ImageList, a corresponding number of images will be added.

For example, if the Size of the ImageList is 16x16 (the default) and you create a child
Bitmap of size 16x48, three images (each of size 16x16) will be added to the ImageL-
ist. This is more efficient than building the images one-by-one. In other cir-
cumstances (where the size of the Bitmap or Icon is not equal to Size of ImageList),
the Bitmap or Icon will be scaled to fit.

Note that when making Bitmaps or Icons as children of an ImageList, it is not nec-
essary to name them because they are subsequently referenced only via the ImageIn-
dex and SelImageIndex properties and not by name. The number of images in an
ImageList is given by the read-only property, ImageCount.

The MapCols property, which must be specified at the time you create the object,
specifies whether or not bitmap colours are remapped to reflect the user's colour pref-
erences.

An ImageList is associated with a ListView or TreeView object by the ImageListObj
property. Each item in the ListView or TreeView is then allocated a specific image in
the ImageList by the ImageIndex and SelImageIndex properties.

Chapter 2: A-Z Reference 313

ImageListObj Property
Applies To: ButtonEdit, ComboEx, CoolBar, ListView, Menu, TabControl,

ToolControl, TreeView

Description

The ImageListObj property is a simple character vector or a ref, or a vector of char-
acter vectors or refs that specifies ImageList objects that are associated with an
object.

For aComboEx or TreeView object, the ImageListObj property specifies the name of,
or ref to, a single ImageList object that contains a set of images to be displayed along-
side its Items. The image(s) displayed by a particular item in its normal (unselected)
and selected states are specified by the corresponding element of the ImageIndex and
SelImageIndex properties respectively.

For CoolBar, Menu, and TabControl objects, the ImageListObj property specifies the
name of, or ref to, a single ImageList object that contains a set of images for its Cool-
Band, MenuItem, and TabButton children respectively.

For a ToolControl, ImageListObj may specifiy up to three ImageList objects that cor-
respond to the three different states, normal, highlighted (hot) and inactive, of its
ToolButton children.

In all these cases, individual images are mapped to the child objects by their ImageIn-
dex property.

For a ListView either one or two ImageList objects may be specified. The first
ImageList contains the large icon set of images. the second contains the small icon
set. The set that is used is determined by the value of the View property. The map-
ping between the set of images in the ImageList and items in the object is determined
by the ImageIndex property.

Chapter 2: A-Z Reference 314

Indents Property
Applies To: ComboEx

Description

Specifies the amount by which items in a ComboEx object are indented.

Indents may be an integer scalar or a vector with the same number of elements as
there are items in the ComboEx. Its default value is 0.

The unit of indenting is 10 pixels. For example, if there are 3 items and Indents is (0 1
2), the items will be indented by 0, 10 and 20 pixels respectively.

Index Property
Applies To: Combo, ComboEx, CoolBand, FileBox, Grid, List, TreeView

Description

For a List and a Combo with Style'Simple', this property specifies the position of
the data in the list box as a positive integer value. If Index has the value "n", it means
that the "nth" item in Items is displayed on the top line in the list box. The value of
Index is dependent upon the value of ⎕IO. Note that Index for a Combo or List can-
not be set using ⎕WC. The value of Index in a Combo with a drop-down list box
(Style'Drop' or 'DropEdit') is always equal to ⎕IO.

For a Grid, Index is a 2-element vector that specifies the row and column number of
the cell that is currently in the top left corner of the Grid.

For a TreeView, Index is a positive integer value that specifies which item appears at
the top of the TreeView window.

For a FileBox, the Index property determines which of the Filters is initially selected.

For a CoolBand, the Index property specifies the position of the CoolBand within its
parent CoolBar, relative to the other CoolBands in the CoolBar.

The value of Index is dependent on ⎕IO, and its default value is equal to ⎕IO.

Chapter 2: A-Z Reference 315

IndexChanged Event 210
Applies To: Grid

Description

If enabled, this event is reported when the value of the Index property of a Grid has
changed as a result of user interaction. The event is reported after the Grid has been
scrolled. You may not modify or nullify the operation with a 0-return callback and
you may not call IndexChanged as a method or generate this event using ⎕NQ. To
cause a Grid to scroll, use ⎕WS to set its Index property.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 4-element vector as follows :

[1] Object ref or character vector

[2] Event 'IndexChanged or 210

[3] Row Integer.

[4] Column Integer.

Input Property
Applies To: Grid

Description

This property specifies objects to be associated with cells in a Grid. These objects
may be of type Button, ColorButton, Combo, Edit, Label, Spinner or TrackBar. In
addition, the Input property may specify instances of OCXClass objects (ActiveX
controls) and NetType objects (.NET classes).

The Input property is either a single ref or a simple character scalar or vector, or a vec-
tor of character vectors or refs. If it specifies a single object, this will be associated
with all of the cells in the Grid. If it specifies a set of objects, these are mapped to
individual cells through the CellTypes property.

When a cell becomes the current cell, its value (defined by the appropriate element of
the Values property) defines the value of a corresponding property of the associated
object The property that corresponds to the value in the cell, depends upon the
Type of the associated object as shown in the following table:

Chapter 2: A-Z Reference 316

Associate Object Type Corresponding Property

Label Text

Edit Value

Combo Text

Button (Style Push) Caption

Button (Style Radio or Check) State

ColorButton CurrentColor

Spinner Value

TrackBar Thumb

OCXClass Specified by InputProperties

NetType Specified by InputProperties

In effect, the user inputs a new value into the current cell by changing the cor-
responding property of its associated object. An associated object may be a
fixedobject that is external to the Grid or a floatingobject that moves automatically
from cell to cell. The latter is achieved by creating the associated object as a child of
the Grid.

If the associated object is an Edit or Combo, the user may change the Text property of
the object by typing, or, in the case of a Combo, by selecting an item from a list. The
new value of the Text property is then used to update the value in the cell (defined
by the Values property of the Grid) when the user moves on. If the associated object
is a radio button, the value in the cell (0 or 1) is reflected by the State property of the
Button. The user may click the Button on and off, changing its State and thereby the
corresponding value in the cell.

If the associated object is a ColorButton, the corresponding elements of the
Values property contain 3-element integer vectors which specify the RGB colour
values.

If the associated object is an instance of an OCXClass object (ActiveX control) or a
NetType object (.NET class), the Grid uses the default property of the external object
if it has one. Alternatively, the InputProperties property is used to specify which
property (or properties) of the external object are to be mapped to elements of Values.
If more than one property is specified, elements of Values are vectors.

If there is no object associated with a cell, or if its associated object is a Label or a
Button with Style Push, the cell is protected and may not be changed by the user.
When the current cell is thus protected, the corresponding row and column titles are
not indented as they are when the cell may be edited.

Chapter 2: A-Z Reference 317

If the associated object is a numeric Edit or Label (FieldType Numeric, Long-
Numeric, Currency, Date, LongDate or Time) the contents of the cell are formatted
accordingly, even when it is not the current cell. Thus a cell associated with a Label
with FieldType Date, always displays as a date.

If the associated object is a Combo or Button, the appearance of a non-current cell is
defined by the corresponding element of the ShowInput property.

The following example illustrates the use of different types of object specified by the
Input and ShowInput properties.

InputMode Property
Applies To: Grid

Description

This property determines editing behaviour and the action of the cursor movement
keys when the user changes the contents of a Grid using a floatingEdit or DropEdit
Combo control.

Chapter 2: A-Z Reference 318

InputMode is a character vector with one of the following values:

'Scroll'
The cursor keys move around the Grid; the user may
switch to InCell mode.

'InCell'
The cursor keys move within the Input object; the mode
reverts to Scroll when the user selects a new cell.

'AlwaysScroll'
The cursor keys move around the Grid; the user may
not switch to InCell mode.

'AlwaysInCell'
The cursor keys move within the Input object, even
when the user moves to a new cell

'AutoEdit' See below

By default, the input mode is Scroll. In this mode, cursor movement keys are actioned
by the Grid itself and used to move from cell to cell. The user may switch to InCell
mode by double-clicking or by pressing the key defined by InputModeKey (the
default is "F2").

In InCell mode, all cursor movement keys are actioned by the Input object and typ-
ically move the cursor around within the Input object and do not switch between
cells. When the user switches to a different cell, InputMode reverts to Scroll mode

If InputMode is AlwaysScroll or AlwaysInCell, the user remains permanently in either
Scroll or InCell mode respectively.

If InputMode is 'AutoEdit', the behaviour of a cell that contains a floating Input
field is as follows:

When the user enters the cell, the contents are selected (and highlighted).At this
stage, the cursor movement keys move to an adjacent cell. If the user presses a (valid)
data key, that character replaces the current contents of the cell.

If the user presses F2 (or the key defined by the InputModeKey property), the data is
de-selected and unhighlighted and the cursor is placed at the rightmost end of the
data.

In either case, the left and right cursor keys now move the cursor within the current
data string, but skip to the adjacent cell from the beginning or end of the data. This
behaviour differs from InCell mode in which the cursor movement keys stick at the
end of the data.

Chapter 2: A-Z Reference 319

InputModeKey Property
Applies To: Grid

Description

This property defines the keystroke used to switch from Scroll mode to Incell mode
in a Grid. It applies only where the Grid has a floatingEdit control. See the descrip-
tion of the InputMode property for further details.

The InputModeKey property is specified (in the same way as the Accelerator prop-
erty) as a 2-element vector of integer values containing the key number and shift state
respectively. Its default is (113 0) which is "F2".

As an example, if you wanted to use Ctrl+Shift+a to switch modes, you would set
InputModeKey to (65 3). 65 is the keynumber for "a" and 3 means Shift (1) + Ctrl (2).

InputProperties Property
Applies To: Grid

Description

The InputProperties property is a vector of character vectors that specifies the names
of properties of an OCXClass (ActiveX Control) or .NET Class that are to be mapped
to the Values property in a Grid.

When an ActiveX Control or .NET Class is used as a child of the Grid, Input-
Properties is used to specify how the value in each Grid cell corresponds to the value
of one or more properties of the child object.

For example, suppose there is a third-party ActiveX Control that displays a playing
card. The control has two properties named Suit and Value that specify the suit
(1=clubs, 2=diamonds, 3=hearts, 4=spades) and card value (1="Ace", 2="2",
…11="Jack",…) respectively. To display these cards in a Grid, the InputProperties
property may be set to ('Suit' 'Value') and each element of the Values prop-
erty must be a 2-element integer vector specifying the suit and value of the cor-
responding card.

'CARDS'⎕WC'OCXClass' '...'
'F'⎕WC'Form'
'F.G'⎕WC'Grid'
'F.G.card'⎕WC'CARDS'
F.G.Input←'F.G.card'
F.G.InputProperties←'Suit' 'Value'
F.G.Values←⍳4 13

Chapter 2: A-Z Reference 320

If InputProperties is not specified, the default property of the ActiveX Control or
.NET Class is used.

InstanceMode Property
Applies To: OLEClient

Description

The InstanceMode property specifies how APL attempts to connect the OLEClient to
an OLE Server.

InstanceMode is a character vector that may be 'ExistingFirst' (the default),
'ExistingOnly' or 'New'. Its value is effective only when the object is created
with ⎕WC. Changing InstanceMode with ⎕WS has no effect.

If InstanceMode is 'ExistingFirst', APL attempts first to connect to a running
instance of the OLE Server. If there is no running instance, it starts the OLE server to
obtain a new object.

If InstanceMode is 'ExistingOnly', APL attempts to connect to a running
instance of the object. If there is no running instance, it fails with a DOMAIN ERROR.

Note that in either case, if there is more than one instance running, there is no way to
predict to which instance APL will be connected.

If InstanceMode is 'New', APL attempts to start the OLE Server to obtain a new
object, whether or not the OLE Server is already running. However, if the OLE Server
has registered itself as a single instance object and is already running, APL will be
connected to it, and a second instance of the Server will not in fact be started.

Interval Property
Applies To: ProgressBar, Timer

Description

Interval is an integer value specified in milliseconds and has a default of 1000.

For a Timer object, the Interval property specifies the frequency with which it gen-
erates Timer events. Setting Interval to 0 disables Timer events.

For a ProgressBar with ProgressStyle 'Marquee', Interval specifies the frequency
with which the animated bar is updated. Setting Interval to ¯1 stops the animation.

Chapter 2: A-Z Reference 321

Italic Property
Applies To: Font

Description

This property specifies whether or not a font represented by a Font object is italicised
or not. It is either 0 (normal) or 1 (italic). There is no default; the value of this prop-
erty reflects the characteristic of the selected font.

ItemDblClick Event 342
Applies To: ListView, TreeView

Description

If enabled, this event is reported when the user double-clicks a mouse button when
the mouse pointer is over an item in a ListView or TreeView object. This event is
reported for information only and may not be controlled in any way using a callback
function. Generating the event with ⎕NQ, or calling it as a method, has no effect.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 6-element vector as follows :

[1] Object ref or character vector

[2] Event 'ItemDblClick' or 342

[3] Item number Integer. The index of the item.

[4] Mouse button Integer.

[5] Shift state Integer. Sum of 1=shift key, 2=Ctrl key, 4=Alt key

[6] Position
Integer. Indicates the position of the mouse-pointer
within the item. It is either 2 (over the icon), 4 (over
the label), 8 (over the line), or 16 (over the symbol).

Chapter 2: A-Z Reference 322

ItemDown Event 340
Applies To: ListView, TreeView

Description

If enabled, this event is reported when the user depresses a mouse button when the
mouse pointer is over an item in a ListView or TreeView object. This event is
reported for information only and may not be controlled in any way using a callback
function. Generating the event with ⎕NQ, or calling it as a method, has no effect.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 6-element vector as follows :

[1] Object ref or character vector

[2] Event 'ItemDown' or 340

[3] Item number Integer. The index of the item.

[4]
Mouse
button Integer.

[5] Shift state Integer. Sum of 1=shift key, 2=Ctrl key, 4=Alt key

[6] Position

Integer. Indicates the position of the mouse-pointer
within the item. It is either 2 (over the icon), 4 (over the
label), 8 (over the line), 16 (over the symbol) or 32 (to
the right of the label).

ItemGroupMetrics Property
Applies To: ListView

Description

This property is used to specify colours and spacing elements for a ListView that is
displaying its Items in groupings (see ItemGroups).

Note that this feature only apples if Native Look and Feel (see page 36) is enabled.

Chapter 2: A-Z Reference 323

ItemGroupMetrics is a 3-item nested vector as follows:

[1]
Text
Colours

2-element vector of 3 element RGB values that specifies the
colour of the group caption and group footer respectively.

[2] Spacing 4-element integer vector that specifies the top, left, bottom
and right spacing around each grouping in pixels

[3] Border
Colours4-element vector of 3 element RGB values that
specifies the colours for the top, left, bottom and right
borders (not yet implemented).

The following expression, coupled with the code shown in the SetGroups example,
causes the items to be displayed as shown below.

F.L.ItemGroupMetrics[1 2]←(2⍴⊂255 0 0)(10 100 0 10)

Chapter 2: A-Z Reference 324

ItemGroups Property
Applies To: ListView

Description

This property specifies item groupings for a ListView object.

Note that this feature only apples if Native Look and Feel (see page 36) is enabled.

ItemGroups is a nested scalar or nested vector each of whose elements specifies a
grouping. Each grouping is a 5-element vector as follows:

[1]
Group
caption character vector

[2] Item index Vector of indices to the Items property that specifies
which Items are in this grouping.

[3]
Caption
alignment

an integer:
1 = left aligned caption (the default)
2 = centre aligned caption
4 = right-aligned caption

[4] State Integer (not yet implemented)

[5] Footer text character vector (not yet implemented)

Note that State and Footer text are not yet implemented by Windows.

For example, the following expressions executed in the WTUTOR95 workspace will
result in the display shown below.

'F'⎕WC'Form' 'ListView Object'
II←⍳⍴COUNTRIES
'F.L'⎕WC'ListView'COUNTRIES(0 0)(100 100)

('ImageList' 'F.I1')
('ImageIndex' (⍳⍴COUNTRIES))

'F.I1'⎕WC'ImageList'('Size' 32 32)
(⊂'F.I1.')⎕WC¨(⊂'Icon' ''),¨↓⍉↑FLAGBITS FLAGCMAP FLAGMASK
GROUPS←⊂'Europe'(11 4 5 6 7 8 9)
GROUPS,←⊂'Americas'(12 3 2)
GROUPS,←⊂'Rest of the World'(1 10)
F.L.ItemGroups←GROUPS

Chapter 2: A-Z Reference 325

You can control the appearance of the groupings using the ItemGroupMetrics prop-
erty.

Chapter 2: A-Z Reference 326

Items Property
Applies To: Combo, ComboEx, List, ListView, Spinner, TreeView

Description

This property specifies the list of items fromwhich the user may choose.

The value of Items is a text array. It is normally specified as a vector of character vec-
tors each of which represents an item. For a Combo, ComboEx, or List or Spinner,
Items may also be a matrix whose rows specify items. If a character scalar or simple
vector is specified, it is treated as a single item.

An empty character vector is treated the same as a vector of blanks, and represents
one item.

A zero-length vector of vectors or an empty matrix represents 0 items. The default
value for Items is an empty matrix.

⎕WG 'Items' returns an array of the same structure as was assigned by ⎕WC or
⎕WS.

ItemUp Event 341
Applies To: ListView, TreeView

Description

If enabled, this event is reported when the user releases a mouse button when the
mouse pointer is over an item in a ListView or TreeView object. This event is
reported for information only and may not be controlled in any way using a callback
function. Generating the event with ⎕NQ, or calling it as a method, has no effect.

Chapter 2: A-Z Reference 327

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 6-element vector as follows :

[1] Object ref or character vector

[2] Event 'ItemUp' or 341

[3] Item number Integer. The index of the item.

[4] Mouse button Integer.

[5] Shift state Integer. Sum of 1=shift key, 2=Ctrl key, 4=Alt key

[6] Position
Integer. Indicates the position of the mouse-pointer
within the item. It is either 2 (over the icon), 4 (over
the label), 8 (over the line), or 16 (over the symbol).

Justify Property
Applies To: Button, ButtonEdit, Edit, Label, Spinner, TabControl

Description

This property determines the manner in which text is justified within the object. It is
a character vector that may take the value 'Left' (the default), 'Centre' or
'Right'. The keyword 'Centre'may also be spelled 'Center'.

When applied to an Edit object with Style'Multi', a value of 'Centre' or
'Right' forces word-wrapping and disables horizontal scrolling. Note that Justify
only applies to a multi-line edit field. If you specify a value for Justify in a 1-line edit
field (Style'Single'), it will be ignored.

For a TabControl, Justify may be 'Right' (which is the default) or 'None' or
empty.

If Justify is 'Right', the TabControl increases the width of each tab, if necessary,
so that each row of tabs fills the entire width of the tab control. Otherwise, if Justify
is empty or 'None', the rows are ragged.

With the exception of Label and TabControl objects, Justify may only be specified
when the object is created using ⎕WC.

Chapter 2: A-Z Reference 328

KeepBits Property
Applies To: Bitmap, Cursor, Icon

Description

This property is be used to control the way that Bitmap, Cursor and Icon objects are
stored in the workspace.

When you create a Bitmap, Icon or Cursor using ⎕WC, APL asks Windows to allocate
a corresponding bitmap, icon or cursor resource. This resource is allocated in Win-
dows memory. If APL were to hold the values of the image properties (CBits, Bits
and CMap for a Bitmap; Bits, CMap and Mask for Cursor and Icon objects) internally
in the workspace, this data would be duplicated. For large bitmaps this would have a
serious impact on memory utilisation and may affect performance. The KeepBits prop-
erty is provided to allow you to control whether or not APL retains the values of the
image properties in the workspace, so that you can choose a strategy to suit your con-
figuration and requirements. KeepBits may take the value 0 or 1.

If KeepBits is 0 the values of the image properties are not stored internally in your
workspace. If you save a workspace containing a Bitmap, Cursor or Icon object, the
corresponding Windows resource is automatically re-allocated when the workspace
is loaded by referring to the associated file. This is the file whose full pathname is
defined by the value of the object's File property. It follows that if you adopt this
strategy, you must ensure that the File property is set correctly. If APL cannot find the
file when the workspace is)LOADed, it cannot re-create the object, and you will get
a VALUE ERROR when you subsequently refer to it. A further consideration is the
effect on ⎕WG. If KeepBits is 0, and you execute ⎕WG 'CBits' or 'Bits' or
'CMap' or 'Mask', APL obtains these values by requesting the data fromWin-
dows.

If KeepBits is set to 1, the contents of the image properties are stored in the work-
space, thus duplicating the information which is held by Windows itself. If you save
a workspace containing a Bitmap, Cursor or Icon the corresponding Windows
resource is automatically re-allocated from the image propertieswhen the workspace
is loaded. The value of the File property is ignored. When you execute ⎕WG
'CBits' or 'Bits' or 'CMap' or 'Mask', APL generates the result directly from
the stored values held (internally) in the workspace.

Chapter 2: A-Z Reference 329

KeepOnClose Property
Applies To: ActiveXContainer, ActiveXControl, Animation, Bitmap,

BrowseBox, Button, ButtonEdit, Calendar, Circle, Clipboard,
ColorButton, Combo, ComboEx, CoolBand, CoolBar, Cursor,
DateTimePicker, Edit, Ellipse, FileBox, Font, Form, Grid, Group,
Icon, Image, ImageList, Label, List, ListView, Locator, Marker,
MDIClient, Menu, MenuBar, MenuItem, Metafile, MsgBox,
OCXClass, OLEClient, OLEServer, Poly, Printer, ProgressBar,
PropertyPage, PropertySheet, Rect, RichEdit, Root, Scroll,
Separator, SM, Spinner, Splitter, Static, StatusBar, StatusField,
SubForm, SysTrayItem, TabBar, TabBtn, TabButton, TabControl,
TCPSocket, Text, Timer, TipField, ToolBar, ToolButton,
ToolControl, TrackBar, TreeView, UpDown

Description

This property is either 0 or 1 and determines how the object is treated when its parent
Form (or, in the case of a Form, the Form itself) is closed by the user, receives a Close
event from ⎕NQ, or when Close is called as a method.

If KeepOnClose is 1 (for the object itself and for all its parents) when its parent Form
is closed, the object changes from being a GUI object to a pure namespace. For exam-
ple, the Type of a Button will change from 'Button' to 'Namespace'. Effec-
tively, the GUI component of the object is discarded but its Namespace component
(and any variables, functions, operators and other namespaces that it contains)
remains intact. Monadic ⎕WCmay subsequently be used to re-attach the GUI com-
ponent to the object.

Note that the default value of KeepOnClose depends upon the way in which a GUI
object was created with ⎕WC. If a GUI object is created by dyadic ⎕WC, Kee-
pOnClose defaults to 0. If a GUI object is attached by monadic ⎕WC, its Kee-
pOnClose property defaults to 1.

Chapter 2: A-Z Reference 330

KeyError Event 23
Applies To: ButtonEdit, Edit, Spinner

Description

If enabled, this event is generated when the user presses and releases a key on the key-
board that is invalid for the FieldType of the object and has been ignored. This event
is reported for information only and you may not disable it or modify it in any way.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 6-element vector as follows :

[1] Object ref or character vector

[2] Event 'KeyError' or 23

[3] Character character scalar

[4] Character code integer scalar

[5] Key Number integer scalar

[6] Shift state integer scalar

In the Classic Edition, the resolution of the keystroke to a character (in ⎕AV) is per-
formed using the Input Translate Table. In the Unicode Edition, the resolution is per-
formed by the Operating System.

In the Unicode Edition, the Character Code is the Unicode code point of the char-
acter that the user entered. In the Classic Edition, it is a number in the range 0-255
which specifies the ASCII character that would normally be generated by the key-
stroke, and is independent of the Input Translate Table. If there is no corresponding
ASCII character, the ASCII code reported is 0.

The key number is the physical key number reported by Windows when the key is
pressed.

The Shift State indicates which (if any) of the Shift, Ctrl and Alt keys are down at the
same time as the key is pressed. It is the sum of the following numbers :

Thus a Shift State of 3 indicates that the user has pressed the key in conjunction with
both the Shift and Ctrl keys. A Shift State of 0 indicates that the user pressed the key
on its own.

Chapter 2: A-Z Reference 331

KeyPress Event 22
Applies To: ActiveXControl, Animation, Button, ButtonEdit, Calendar,

ColorButton, Combo, ComboEx, DateTimePicker, Edit, Form, Grid,
Group, List, ListView, MDIClient, ProgressBar, PropertyPage,
RichEdit, Scroll, Spinner, SubForm, TrackBar, TreeView

Description

If enabled, this event is generated when the user presses and releases a key on the key-
board. It is reported for whichever object has the keyboard focus at the time.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 6-element vector as follows :

[1] Object ref or character vector

[2] Event 'KeyPress' or 22

[3] Input Code character scalar or vector

[4] Character code integer scalar

[5] Key Number integer scalar

[6] Shift state integer scalar

If the keystroke resolves to a character, the Input Code is a character scalar.

If the keystroke resolves to a command recognised by Dyalog APL, such as UC (Up
Cursor) or ER (Enter) the Input Code contains the corresponding 2-element character
vector.

In the Classic Edition, the resolution of the keystroke to a character (in ⎕AV) or to a
command, is performed using the Input Translate Table.

In the Unicode Edition, the resolution is performed by the Operating System. How-
ever, if the keystroke resolves to a navigation or control key (such as Cursor Up or
Enter), the same 2-character "command" is reported. Note however that commands
that are purely internal to Dyalog APL (such as Trace, commonly Ctrl+Enter) are not
reported as such and the Input Code will be empty.

In the Unicode Edition, the Character Code is the Unicode code point of the char-
acter that the user entered. In the Classic Edition, it is a number in the range 0-255
which specifies the ASCII character that would normally be generated by the key-
stroke, and is independent of the Input Translate Table. If there is no corresponding
ASCII character, the ASCII code reported is 0.

Chapter 2: A-Z Reference 332

The key number is the physical key number reported by Windows when the key is
pressed.

The Shift State indicates which (if any) of the Shift, Ctrl and Alt keys are down at the
same time as the key is pressed. It is the sum of the following numbers :

Thus a Shift State of 3 indicates that the user has pressed the key in conjunction with
both the Shift and Ctrl keys. A Shift State of 0 indicates that the user pressed the key
on its own.

Example
∇ Key;Form1

[1] 'Form1'⎕WC'Form'('Event' 'KeyPress' 'Keycb')
[2] ⎕DQ'Form1'

∇

∇ Keycb msg
[1] DISPLAY msg

∇

On running function Key, the following output will be displayed as a result of the
user pressing the following 5 keys in succession:

1. "a"
2. Shift+"a"
3. Cursor Up
4. β ("b" using a Greek keyboard)
5. ⍳ (Ctrl+"i" using a UK APL keyboard)

Unicode Edition
.→-----------------------------.
| .→----. .→-------. |
| |Form1| |KeyPress| a 97 65 0 |
| '-----' '--------' - |
'∊-----------------------------'
.→-----------------------------.
| .→----. .→-------. |
| |Form1| |KeyPress| A 65 65 1 |
| '-----' '--------' - |
'∊-----------------------------'

Chapter 2: A-Z Reference 333

.→-------------------------------.
| .→----. .→-------. .→-. |
| |Form1| |KeyPress| |UC| 0 38 0 |
| '-----' '--------' '--' |
'∊-------------------------------'
.→------------------------------.
| .→----. .→-------. |
| |Form1| |KeyPress| β 946 66 0 |
| '-----' '--------' |
'∊------------------------------'
.→-------------------------------.
| .→----. .→-------. |
| |Form1| |KeyPress| ⍳ 9075 73 2 |
| '-----' '--------' - |
'∊-------------------------------'

Classic Edition
.→-----------------------------.
| .→----. .→-------. |
| |Form1| |KeyPress| a 97 65 0 |
| '-----' '--------' - |
'∊-----------------------------'
.→-----------------------------.
| .→----. .→-------. |
| |Form1| |KeyPress| A 65 65 1 |
| '-----' '--------' - |
'∊-----------------------------'
.→-------------------------------.
| .→----. .→-------. .→-. |
| |Form1| |KeyPress| |UC| 0 38 0 |
| '-----' '--------' '--' |
'∊-------------------------------'
.→--------------------------------.
| .→----. .→-------. .⊖. |
| |Form1| |KeyPress| | | 223 66 0 |
| '-----' '--------' '-' |
'∊--------------------------------'
.→----------------------------.
| .→----. .→-------. |
| |Form1| |KeyPress| ⍳ 9 73 2 |
| '-----' '--------' - |
'∊----------------------------'

Chapter 2: A-Z Reference 334

Label Object
Purpose: Displays static text.

Parents ActiveXControl, CoolBand, Form, Grid, Group, PropertyPage,
SubForm, ToolBar, ToolControl

Children Circle, Cursor, Ellipse, Font, Marker, Poly, Rect, Text, Timer

Properties Type, Caption, Posn, Size, Coord, Border, Justify, Active, Visible,
Event, Sizeable, Dragable, FontObj, FCol, BCol, CursorObj,
AutoConf, Data, Attach, EdgeStyle, Handle, Hint, HintObj, Tip,
TipObj, FieldType, Decimals, FormatString, Value, Translate,
Accelerator, AcceptFiles, KeepOnClose, Redraw, TabIndex,
MethodList, ChildList, EventList, PropList

Methods Detach, GetTextSize, Animate, GetFocus, ShowSIP, ChooseFont

Events Close, Create, FontOK, FontCancel, DragDrop, Configure,
ContextMenu, DropFiles, DropObjects, Expose, Help,
MouseDown, MouseUp, MouseMove, MouseDblClick,
MouseEnter, MouseLeave, MouseWheel, Select

Description

This object displays a text label, a number, a date or a time value.

If FieldType is empty, the Label displays the text defined by its Caption property. If
FieldType is 'Numeric', 'LongNumeric', 'Currency', 'Date',
'LongDate', or 'Time' the Label converts and formats the number defined by its
Value property and displays this instead. See FieldType property for details.

The Border property determines whether or not the label has a border. A value of 0
means no border (the default). A value of 1 means that a 1-pixel border is drawn
around the label.

By default, the value of the EdgeStyle property for a Label is 'None' and the value
of BCol is 0 which is normally white, or grey if the parent object has a 3-dimensional
appearance. You can change its appearance by setting EdgeStyle and/or BCol to dif-
ferent values.

Chapter 2: A-Z Reference 335

LastError Property
Applies To: ActiveXControl, OLEClient, OLEServer, Root

Description

The LastError property provides information about the most recent error reported by
OLE. You may use this property to report an error from an OLEServer or Activ-
eXControl to a host application.

LicenseKey Property
Applies To: OCXClass

Description

The LicenseKey property is a character string that contains the license key for an
ActiveX control.

If an ActiveX control requires a license key, it must be specified by an application
when it creates an instance of the control. Typically, the license key is required only
by the run-time version of an ActiveX control, and ismade available to an appli-
cation by the development version of the control.

Limits Property
Applies To: ProgressBar, Scroll, Spinner, TrackBar, UpDown

Description

This property is a 2-element vector that specifies the minimum and maximum values
of an object. The values must be in the range (-2*31) to (¯1+2*31) inclusive.

Chapter 2: A-Z Reference 336

List Object
Purpose: Allows the user to select one or more items from a list.

Parents ActiveXControl, CoolBand, Form, Group, PropertyPage, SubForm,
ToolBar, ToolControl

Children Circle, Cursor, Ellipse, Font, Marker, Poly, Rect, Text, Timer

Properties Type, Items, Posn, Size, Style, Coord, Border, Active, Visible,
Event, VScroll, SelItems, Sizeable, Dragable, FontObj, FCol, BCol,
CursorObj, AutoConf, Index, Data, Attach, EdgeStyle, Handle,
Hint, HintObj, Tip, TipObj, Translate, Accelerator, AcceptFiles,
MultiColumn, ColumnWidth, KeepOnClose, Redraw, SortItems,
TabIndex, MethodList, ChildList, EventList, PropList

Methods Detach, GetTextSize, Animate, GetFocus, ShowSIP, ChooseFont

Events Close, Create, FontOK, FontCancel, DragDrop, Configure,
ContextMenu, DropFiles, DropObjects, Expose, Help, KeyPress,
GotFocus, LostFocus, MouseDown, MouseUp, MouseMove,
MouseDblClick, MouseEnter, MouseLeave, MouseWheel, Select

Description

The Items property is either a vector of character vectors or a character matrix, and
determines the items in the List.

The size and position of the area used to display the list is defined by Size and Posn.
If Size is not chosen to represent an exact number of lines of text, the bottom line of
text may be clipped.

The Index property specifies or reports the position of Items in the list box as a pos-
itive integer value. If Index has the value "n", it means that the "nth" item in Items is
displayed on the top line in the list box. However, it is ignored if all the Items fit
within the List object. Note that Index can only be set using ⎕WS and not by ⎕WC.
The default value for Index is ⎕IO.

The Style property may be 'Single' (the default) or 'Multi'. 'Single' allows
only a single item to be selected. 'Multi' allows several items to be chosen. In
either case, if the Select event is enabled, it is generated whenever the selection
changes. If Style is 'Multi' the List will generate a Select event every time an item
is added to the selected list.

UnderWindows, you may select or de-select multiple items in a List object by press-
ing the Ctrl key at the same time as pressing the left mouse button.

Chapter 2: A-Z Reference 337

The SelItems property is a boolean vector with one element per element or row in
Items and indicates which (if any) of the items is currently selected (and highlighted).

The VScroll property determines whether or not the list has a scrollbar. Its possible
values are :

¯2 scrollbar if required

¯1 scrollbar if required

0 no scrollbar

Note that data in a List is always scrollable if there are more items than will fit in the
box. VScroll determines ONLY whether or not a scrollbar is provided.

The MultiColumn property is a boolean value that specifies whether or not the List
object displays its items in columns. The default is 0 which produces a single-column
display. If MultiColumn is 1, the List object displays its items in columns whose
width is defined by the ColumnWidth property.

ListTypeLibs Method 520
Applies To: Root

Description

The ListTypeLibs method reports the names and CLSIDs of all the loaded Type
Libraries.

The ListTypeLibs method is niladic.

The result is a nested vector with one element per loaded Type Library.

Each element is a vector of 2-element charcater vectors. The first is the name of the
Type Library; the second is its class identifier or CLSID.

Example:
'EX'⎕WC'OLEClient' 'Excel.Application'
⍴ListTypeLibs

3
↑⊃ListTypeLibs

Microsoft Excel 9.0 Object Library
{00020813-0000-0000-C000-000000000046}

↑⊃¨ListTypeLibs
Microsoft Excel 9.0 Object Library
Microsoft Visual Basic for Applications Extensibility 5.3
Microsoft Office 9.0 Object Library

Chapter 2: A-Z Reference 338

ListView Object
Purpose: The ListView object displays a collection of items.

Parents ActiveXControl, CoolBand, Form, Group, PropertyPage, SubForm,
ToolBar, ToolControl

Children Bitmap, Circle, Cursor, Ellipse, Font, Icon, ImageList, Marker, Poly,
Rect, Text, Timer

Properties Type, Items, Posn, Size, Style, Coord, Align, Border, Active,
Visible, Event, DragItems, View, AutoArrange, Header, Wrap,
EditLabels, ImageListObj, ReportInfo, ColTitles, ImageIndex,
ReportImageIndex, ReportBCol, HeaderImageList,
HeaderImageIndex, VScroll, HScroll, SelItems, Sizeable, Dragable,
FontObj, FCol, BCol, CursorObj, AutoConf, Data, Attach,
EdgeStyle, Handle, Hint, HintObj, Tip, TipObj, ColTitleAlign,
ColTitle3D, Translate, Accelerator, AcceptFiles, KeepOnClose,
CheckBoxes, FullRowSelect, GridLines, Redraw, TabIndex,
AlwaysShowSelection, ItemGroups, ItemGroupMetrics,
MethodList, ChildList, EventList, PropList

Methods Detach, ChooseFont, GetTextSize, Animate, GetFocus, ShowSIP,
GetItemState, SetItemState, GetItemPosition

Events Close, Create, FontOK, FontCancel, BeginEditLabel,
EndEditLabel, DragDrop, Configure, ContextMenu, DropFiles,
DropObjects, Expose, Help, KeyPress, GotFocus, LostFocus,
MouseDown, MouseUp, MouseMove, MouseDblClick,
MouseEnter, MouseLeave, MouseWheel, ColumnClick,
SetItemPosition, ItemDown, ItemUp, ItemDblClick, GetTipText,
SetColSize, Select

Description

The ListView object is a window that displays a collection of items, each item con-
sisting of an icon and a label. The ListView provides several ways of arranging items
and displaying individual items. For example, additional information about each
item can be displayed in columns to the right of the icon and label. An example of
the use of a ListView object is the "My Computer"Windows utility.

The Items property is a vector of character vectors that specifies the labels for the
items displayed by the ListView. The ImageListObj property specifies the names of
two ImageList objects that define two sets of icons; a large icon (32x32 pixel) set
and a small icon (16x16 pixel) set. Alternatively, ImageListObj may be empty (no
icons displayed) or contain just the name of a single large icon ImageList.

Chapter 2: A-Z Reference 339

The View property contains a character vector that determines how the items are dis-
played. It may have one of the following values; 'Icon' (the default),
'SmallIcon', 'List' or 'Report'. When View is 'Icon' or
'SmallIcon', the items are arranged row-wise with large or small icons as appro-
priate. When View is set to 'List', the items are arranged column-wise using small
icons. Examples of 'Icon'and 'List' views are illustrated below.

When View is set to 'Report', the items are displayed in a single column using
small icons but with the matrix specified by ReportInfo displayed alongside. In this
format, the boolean Header property determines whether or not the object also pro-
vides column headings. Its default value is 1. The column headings themselves are
specified by the ColTitles property. Their alignment (and the alignment of the data in
the columns beneath them) is defined by the ColTitleAlign property.

Chapter 2: A-Z Reference 340

The appearance of the column titles is further controlled by the ColTitle3D property.
This is a boolean value (default 1) which specifies whether or not the column titles
have a 3-dimensional (plinth) appearance. Header and ColTitle3D may only be set
when the object is created using ⎕WC and may not subsequently be changed by ⎕WS.

In 'Report' View, columns may be resized by the user dragging the bars between
the titles, or under program control using the SetColSize event. A 'Report'view
example is illustrated below.

The DragItems property is boolean and specifies whether or not the user may drag an
item from one position to another. Its default value is 1 (dragging is enabled).

The AutoArrange property is boolean and specifies whether or not the items are auto-
matically re-arranged whenever an item is repositioned by the user or moved under
program control. Its default value is 0.

The EditLabels is a boolean property (default 0) that determines whether or not the
user may edit the labels which are specified by the Items property.

Chapter 2: A-Z Reference 341

The Style property may be 'Single', which specifies that only one itemmay be
selected at a time, or 'Multi'which permits multiple selections to be made. The
default is 'Multi'.

The CheckBoxes property is Boolean and specifies whether or not check boxes are
drawn to the left of items. Its default value is 0.

The GridLines property is Boolean and specifies whether or not grid lines are drawn
between items. This applies only when View is 'Report'. Its default value is 0.

In 'Report' View, the ReportImageIndex property specify images to be displayed
alongside each item, and overrides the images specified by ImageListObj. The Head-
erImageList and HeaderImageIndex properties specify images to be displayed along-
side each column title.

The following example illustrates the use of these properties.

The ReportBCol property specifies each item's background colour.

The FullRowSelect property is Boolean and specifies whether or not the entire row is
highlighted to indicate selected items. This applies only when View is 'Report'.
Its default value is 0.

Chapter 2: A-Z Reference 342

The ItemGroups and ItemGroupMetrics properties allow you to display items in
groups as illustrated below.

Note that this feature only apples if Native Look and Feel (see page 36) is enabled.

Chapter 2: A-Z Reference 343

LocalAddr Property
Applies To: TCPSocket

Description

The LocalAddr property is a character vector that specifies the IP address of your com-
puter. Its default value is '0:0:0:0' which refers to your default IP address.

Unless your computer has more than one network adapter each identified by a dif-
ferent IP address, you do not need to specify LocalAddr. However, in this case you
may use either LocalAddr orLocalAddrName to identify the adapter. If you specify
both properties, the value of LocalAddrName will be ignored.

Note that you may also set the value of LocalAddr to an empty character vector. In
this case, the value returned by ⎕WG will be '0:0:0:0'.

LocalAddr may only be specified in the ⎕WC statement that creates the TCPSocket
and may not subsequently be changed using ⎕WS.

LocalAddrName Property
Applies To: TCPSocket

Description

The LocalAddrName property is a character vector that specifies the host name of
your computer. It may be useful when you have more than one network adapter (per-
haps an Ethernet adapter and a token ring adapter) and you wish to avoid hard-cod-
ing the IP address.

Note that you may use eitherLocalAddror LocalAddrName to identify the local com-
puter. If you specify both properties, the value of LocalAddrName will be ignored.

LocalAddrName may only be specified by a server TCPSocket. Furthermore, it must
be specified in the ⎕WC statement that creates the TCPSocket object and it may not
subsequently be changed using ⎕WS.

When the specified host name has been resolved to an IP address, the TCPSocket will
generate a TCPGotAddr event and update the value of LocalAddr accordingly.

For a client TCPSocket, you may not specify LocalAddrName and ⎕WG returns an
empty character vector.

Chapter 2: A-Z Reference 344

Locale Property
Applies To: OLEClient

Description

The Locale property specifies the language in which the OLE server, attached to an
OLEClient, exposes its methods (functions) and properties (variables).

When you create an OLEClient object, Dyalog APL/W requests the default Type
Library associated with the OLE server that you specify. Many OLE servers, such as
Excel.Application, provide different names for the methods and properties they
expose for different languages. Without Locale, it would be difficult to write an OLE
client application that could run in different countries, as the names of the functions
and variables may be unpredictable.

Locale is an integer; for example, the value 9 specifies English and the value 12 spec-
ifies French.

Locale may only be specified by the ⎕WC statement that is used to create the OLE-
Client; it may not subsequently be changed using ⎕WS. A table of commonly used
Locale values is given below.

Note that Dyalog cannot guarantee that you will actually be given the Locale you
specify. This is a function of your specific installation and the OLE server in ques-
tion. However, Dyalog believes that for Microsoft products, it is a fairly safe bet that
the US/English interface will be available in most countries.

Language Locale

Neutral 0

Danish 6

Dutch 19

English 9

Finnish 11

French 12

German 7

Italian 16

Norwegian 20

Chapter 2: A-Z Reference 345

Language Locale

Portuguese 22

Russian 25

Spanish 10

Swedish 29

LocalPort Property
Applies To: TCPSocket

Description

The LocalPort property is a scalar integer in the range 1-65536 that identifies the port
number associated with a TCPSocket object.

Note that you may use either LocalPort orLocalPortName to identify the service.
The use of LocalPortName is slightly slower but it avoids hard-coding the port
number in your program and is generally more flexible. If you specify both prop-
erties, the value of LocalPortName will be ignored.

LocalPort may be specified only by the process that is initiating the connection (the
server) and must be set by the ⎕WC statement that creates the TCPSocket. LocalPort
may not subsequently be changed using ⎕WS

If you specify a value of 0, the system will assign an available port number. For exam-
ple:

'S1' ⎕wc'TCPSocket' ('LocalPort' 0)
S1.LocalPort

4047

For a process that is completing a connection, LocalPort is allocated by the system
and is effectively read-only.

Chapter 2: A-Z Reference 346

LocalPortName Property
Applies To: TCPSocket

Description

The LocalPortName property is a character vector that specifies the port name of the
local service that you wish to offer as a server.

Note that you may use eitherLocalPortor LocalPortName to identify the service. The
use of LocalPortName is slightly slower but it avoids hard-coding the port number in
your program and is generally more flexible. If you specify both properties, the value
of LocalPortName will be ignored.

LocalPortName may be specified only by the process that is initiating the connection
(the server) and must be set by the ⎕WC statement that creates the TCPSocket. Local-
PortName may not subsequently be changed using ⎕WS.

When the specified port name has been resolved to a port number, the TCPSocket
will generate a TCPGotPort event and update the value of LocalPort accordingly.

For a client TCPSocket, you may not specify LocalPortName and ⎕WG returns an
empty character vector.

Locator Object
Purpose: Allows the user to input a point, ellipse, line or rectangle.

Parents ActiveXControl, Form, Group, PropertyPage, PropertySheet, Root,
Static, SubForm, TCPSocket, ToolBar, ToolControl

Children Timer

Properties Type, Posn, Size, LStyle, Style, Coord, Event, Step, Sizeable,
CursorObj, Data, Accelerator, KeepOnClose, MethodList,
ChildList, EventList, PropList

Methods Detach, Wait

Events Close, Create, Locator, Select

Description

This object is used to obtain graphical input from the user. Like a pop-up menu or a
MsgBox, the Locator is a modalobject whose interaction with the user is initiated by
a "local" ⎕DQ. This is terminated when the user releases a mouse button or presses
any key other than a cursor movement key, Shift, Ctrl or Alt.

Chapter 2: A-Z Reference 347

It is usual to initiate the ⎕DQ for the Locator from within a callback function attached
to a MouseDown (1) Event.

When the "local" ⎕DQ is terminated, a Locator (80) Event is generated. The asso-
ciated event message contains the new position and size of the Locator, together with
how the event was generated (keystroke or mouse button). To obtain the Locator's
new position or size, you must enable the event by setting its "action" code to 1, or to
the name of a suitable callback function.

The value of the Style property determines the type of locator displayed. It may be
'Point', 'Line', 'Rect', or 'Ellipse'. The default value is 'Rect'. The
value of the Sizeable property is 0 or 1 and determines whether or not "rub-
berbanding" is enabled. Its default value is 1 which turns "rubberbanding" on. The
Size property determines the initial size of the Locator when displayed by ⎕DQ. Its
default value is (0,0).

If Style is 'Rect'the Locator displays a rectangle. One corner of the rectangle is
positioned at Posn. The diagonally opposite corner is positioned at (Posn+Size). If
Sizeable is 0, the entire rectangle is dragged as the mouse is moved. If Sizeable is 1,
the

corner initially defined by (Posn+Size) is dragged (rubberbanding the rectangle) as
the mouse is moved. The rectangle disappears when the operation is terminated. The
new position or size of the rectangle is reported in the Locator event message.

If Style is 'Ellipse'the Locator displays an ellipse. One corner of the bounding
rectangle of the ellipse is positioned at Posn. The diagonally opposite corner is posi-
tioned at (Posn+Size). If Sizeable is 0, the entire ellipse is dragged as the mouse is
moved. If Sizeable is 1, the corner of the bounding rectangle initially defined by
(Posn+Size) is dragged (rubberbanding the ellipse) as the mouse is moved. The
ellipse disappears when the operation is terminated. The new position or size of the
bounding rectangle of the ellipse is reported in the Locator event message.

If Style is 'Line'the Locator displays a line drawn between the points defined by
Posn and Posn+Size. If Sizeable is 0, the line is dragged with the cursor as the mouse
is moved. If Sizeable is 1, the end of the line initially defined by Posn+Size is
dragged (rubberbanding the line) as the mouse is moved. The line disappears when
the operation is terminated. The new position or size of the line is reported in the
Locator event message.

If 'Style' is 'Point', the values of Sizeable and Size are ignored. During the
⎕DQ no visible feedback (other than the cursor) is provided as the user moves the
mouse. When the ⎕DQ terminates, the new position of the Locator is reported in the
Locator event message.

Chapter 2: A-Z Reference 348

The Step property is a 2-element integer vector (default value 1 1) that specifies the
increments (in pixels) by which the size or position of the Locator changes in the Y
and X directions respectively as the user moves the Locator.

The Locator is normally initiated from a MouseDown (1) event, and it is natural to
place it at the current cursor position. However, if you are using rubberbanding, you
will normally want to have the cursor appear at the end or corner of the Locator that
moves. If you start with a non-zero sized Locator, you must set Posn (which defines
the fixed end or corner) to the current cursor position minus Size to achieve this
effect.

Locator Event 80
Applies To: Locator

Description

If enabled, this event is generated when the user releases a mouse button, or presses
any key (other than a cursor movement key) during a ⎕DQ on a Locator object.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 9-element vector as follows :

[1] Object ref or character vector

[2] Event 'Locator' or 80

[3] Y y-position of Locator after ⎕DQ

[4] X x-position of Locator after ⎕DQ

[5] H height of Locator after ⎕DQ

[6] W width of Locator after ⎕DQ

[7] Mouse Button number of the button which was released (0 if
keystroke)

[8] Keystroke character scalar or vector containing the "Input Code"
for the key that terminated the operation

[9] Shift state integer scalar

Chapter 2: A-Z Reference 349

LockColumns Method 227
Applies To: Grid

Description

This method is used to lock one or more columns of a Grid object. However, Lock-
Columns is not supported in combination with hierarchical column titles as specified
by the ColTitleDepth property.

The argument to LockColumns is a 1 or 2-element vector as follows.

[1] Column(s) integer scalar, vector or matrix

[2] Lock flag 0 or 1

Column(s)may be a scalar or a vector specifying the column or columns to be locked
or unlocked. Alternatively, it may be a matrix whose first row specifies the columns
to be locked and whose second row specifies wherethey are to be locked.

If the Lock flag is 1, the corresponding columns are locked. This is the default and
may be omitted. If the Lock flag is 0, the corresponding columns are unlocked

Examples:
F.G.LockColumns 3 ⍝Lock 3rd column
F.G.LockColumns 3 0 ⍝Unlock 3rd column
F.G.LockColumns (4 5) ⍝Lock 4th & 5th cols
F.G.LockColumns (2 1⍴8 4) ⍝Lock 8 at 4
F.G.LockColumns 3 ⍝Lock 3rd column
F.G.LockColumns 3 0 ⍝Unlock 3rd column
F.G.LockColumns (4 5) ⍝Lock 4th & 5th cols
F.G.LockColumns (2 1⍴8 4) ⍝Lock 8 at 4

The result is an integer matrix containing the indices of all locked columns and the
positions at which they are currently locked.

The expression:

F.G.LockColumns ⊂⍬

may therefore be used to obtain the indices of the locked columns, and:

F.G.LockColumns(F.G.LockColumns ⊂⍬) 0

unlocks all currently locked columns.

Chapter 2: A-Z Reference 350

Locks are additive. If column 4 is locked, locking column 5 results in both columns 4
and 5 being locked.

A locked column remains fixed in position and does not scroll sideways. The user
may enter and edit cells in a locked column in the normal way, but the behaviour of
the various cell movement keys (Tab, left and right cursor, and so forth) differs when
a locked column is encountered. As a general rule, if a keystroke attempts to move
the cursor into a locked column from an adjacent column, and the adjacent column
has been scrolled, it is unscrolled and the cursor remains in the (new) column adja-
cent to the fixed column. If not, the cursor moves into the locked column.

When you lock a column, the position you specify for it to be locked at is a position
in the data and not the physical position of the column as displayed in the Grid. The
physical column in the Grid depends upon the value of the Index property at the time
it was locked.

If C is the value specified for where a given column is to be locked, the value of the
physical column Pat which it will be displayed in the Grid named GRIDis:

P←C-(2⊃GRID ⎕WG 'Index')-⎕IO

Furthermore, the position of a locked column given by the result of the LockColumns
method changes (with the Index property) as the Grid is scrolled.

LockRows Method 226
Applies To: Grid

Description

This method is used to lock one or more Rows of a Grid. However, LockRows is not
supported in combination with hierarchical row titles as specified by the
RowTitleDepth property.

The argument to LockRows is a 1 or 2-element vector as follows.

[1] Row(s) integer scalar, vector or matrix

[2] Lock flag 0 or 1

Row(s)may be a scalar or a vector specifying the row or rows to be locked or
unlocked. Alternatively, it may be a matrix whose first row specifies the data rows to
be locked and whose second row specifies where in the Grid they are to be locked

If the Lock flag is 1, the corresponding rows are locked. This is the default and may
be omitted. If the Lock flag is 0, the corresponding rows are unlocked.

Chapter 2: A-Z Reference 351

Examples:
F.G.LockRows 3 ⍝Lock 3rd row
F.G.LockRows 3 0 ⍝Unlock 3rd row
F.G.LockRows (4 5) ⍝Lock 4th and 5th rows
F.G.LockRows (2 1⍴8 4) ⍝Lock row 8 at 4
F.G.LockRows 3 ⍝Lock 3rd row
F.G.LockRows 3 0 ⍝Unlock 3rd row
F.G.LockRows (4 5) ⍝Lock 4th and 5th rows
F.G.LockRows (2 1⍴8 4) ⍝Lock row 8 at 4

The result is an integer matrix containing the indices of all locked rows and the posi-
tions at which they are currently locked.

The expression:

F.G.LockRows ⊂⍬

may therefore be used to obtain the indices of the locked rows, and

F.G.LockRows(F.G.LockRows ⊂⍬) 0

unlocks all currently locked rows.

Locks are additive. If row 4 is locked, locking row 5 results in both rows 4 and 5
being locked.

A locked row remains fixed in position and does not scroll vertically. The user may
enter and edit cells in a locked row in the normal way, but the behaviour of the var-
ious cell movement keys (Tab, up and down cursor, and so forth) differs when a
locked row is encountered. As a general rule, if a keystroke attempts to move the cur-
sor into a locked row from an adjacent row, and the adjacent row has been scrolled, it
is unscrolled and the cursor remains in the (new) row adjacent to the fixed row. If not,
the cursor moves into the locked row.

When you lock a row, the position you specify for it to be locked at is a position in
the data and not the physical position of the column as displayed in the Grid. The
physical column in the Grid depends upon the value of the Index property at the time
it was locked.

If R is the value specified for where a given row is to be locked, the value of the phys-
ical row Pat which it will be displayed in the Grid named GRIDis given by the
expression:

P←R-(⊃GRID ⎕WG 'Index')-⎕IO

Furthermore, the position of a locked row given by the result of the LockRows
method changes (with the Index property) as the Grid is scrolled.

Chapter 2: A-Z Reference 352

LostFocus Event 41
Applies To: ActiveXControl, Animation, Button, ButtonEdit, Calendar,

ColorButton, Combo, ComboEx, DateTimePicker, Edit, Form, Grid,
Group, List, ListView, MDIClient, ProgressBar, PropertyPage,
RichEdit, Scroll, Spinner, SubForm, TrackBar, TreeView

Description

If enabled, this event is generated when the user transfers the keyboard focus away
from the object in question.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 3-element vector as follows :

[1] Object ref or character vector

[2] Event 'LostFocus' or 41

[3] Object name character vector (name of object that has received the
focus)

If the focus is transferred to a window that is not part of the Dyalog APL GUI Inter-
face, the third element is an empty vector.

The LostFocus event is generated after the focus has changed. The default processing
is therefore to take no action. However, if you inhibit the event by returning a 0 from
your callback function, the focus is automatically restored to the object that had lost
it.

Chapter 2: A-Z Reference 353

LStyle Property
Applies To: Circle, Ellipse, Locator, Poly, Rect

Description

This property determines the type of line used to draw a graphics object. It takes one
of the following integer values, or, if the object contains more than one component, a
vector of such values.

0 solid line

1 dashed line

2 dotted line

3 dash dotted line

4 dash dot dotted line

5 null line (invisible)

If LStyle is in the range 1-4, the gaps between the dashes and dots are drawn using
the colour specified by BCol, or are left undrawn (i.e. transparent) if BCol is not
defined.

If LWidth specifies a line width greater than 1 pixel, the value of LStyle is ignored
and a solid (thick) line is drawn regardless.

LWidth Property
Applies To: Circle, Ellipse, Poly, Rect

Description

This property determines the width of line used to draw a graphics object. A positive
value specifies the line width in pixels. A negative value specifies line width in units
of the co-ordinate system defined for the object in the x direction. If the object con-
tains more than one component, LWidth may be a vector.

In versions of Dyalog APL prior to 13.2 revision 19489, if LWidth specified a line
width greater than 1 pixel, a solid line was drawn in the colour specified by the FCol
Property, regardless of the value of LStyle. From that revision onwards, if the value of
LWidth is greater than 1 then the value of LStyle is honoured, but only the FCol of
the line is honoured - the BCol is still ignored.

Chapter 2: A-Z Reference 354

MakeGIF Method 261
Applies To: Bitmap

Description

This method is used to generate a GIF representation of a picture from a Bitmap
object suitable for display by a Web browser.

The MakeGIF method is niladic.

The result is an integer vector containing the encoded GIF image.

Example:
⍴GIF←BM.MakeGIF

19620

MakePNG Method 260
Applies To: Bitmap

Description

This method is used to generate a PNG (Portable Network Graphics) representation
of a picture from a Bitmap object suitable for display by a Web browser.

The MakePNG method is niladic.

The result is an integer vector containing the encoded PNG image.

Example:

⍴PNG←BM.MakePNG
4930

Chapter 2: A-Z Reference 355

MapCols Property
Applies To: ImageList

Description

The MapCols property specifies whether or not the button colours in bitmaps and
icons in an ImageList are re-mapped to reflect the users colour preferences. If your bit-
maps and icons represent buttons using the standard windows button colours, this
property causes those colours to be changed to suit the user's own colour scheme.

MapCols is a single number with the value 0 (no colour mapping) or 1 (colours are
automatically re-mapped. The default is 0.

If MapCols is 1, the following colour mappings are performed:

Colour Description Mapped to

 0 0 0 Black Button Text

128 128 128 Dark grey Button Shadow

191 191 191 Light grey Button Face

192 192 192 Light grey Button Face

255 255 255 White Button Highlight

Chapter 2: A-Z Reference 356

Marker Object
Purpose: A graphical object used to draw polymarkers.

Parents ActiveXControl, Animation, Bitmap, Button, ButtonEdit, Combo,
ComboEx, Edit, Form, Grid, Group, Label, List, ListView,
MDIClient, Metafile, Printer, ProgressBar, PropertyPage,
PropertySheet, RichEdit, Scroll, Spinner, Static, StatusBar,
SubForm, TabBar, TipField, ToolBar, TrackBar, TreeView,
UpDown

Children Timer

Properties Type, Points, Style, Size, FCol, Coord, Visible, Event, Dragable,
OnTop, AutoConf, Data, Accelerator, KeepOnClose, DrawMode,
MethodList, ChildList, EventList, PropList

Methods Detach

Events Close, Create, DragDrop, MouseDown, MouseUp, MouseMove,
MouseDblClick, Help, Select

Description

The Points property specifies one or more sets of points at which one or more sets of
polymarkers are to be drawn.

The Style property determines the symbol that is drawn at each of a set of points.
Marker styles are specified either by numbers which represent the following symbol
shapes .

0 .

1 +

2 *

3 ⎕

4 ×

5 ⋄

6 ∘

or by character vectors containing the names of Bitmap or Icon objects.

Chapter 2: A-Z Reference 357

The height of each symbol is specified by the value of the Size property. However
this applies only to Styles 1-6 and is ignored if Style is 0 or the name of a Bitmap.
The colour of each symbol is specified by the FCol property. The default is black.

The value of Dragable determines whether or not the object can be dragged. The
value of AutoConf determines whether or not the Marker object is resized when its
parent is resized.

The structure of the property values is best considered separately for single and mul-
tiple sets of polymarkers.

Single Set of Polymarkers
For a single set of polymarkers, Points is either a 2-column matrix of (y,x) co-ordi-
nates, or a 2-element vector of y and x co-ordinates respectively.

Style and Size are both simple scalar numbers.

FCol is either a single number representing a standard colour, or a 3-element vector
which specifies the marker colour explicitly in terms of RGB values.

First make a Form :

'F' ⎕WC 'Form'

Draw a point at (y=20, x=10)

'F.M1' ⎕WC 'Marker' (20 10)

Draw a row of points at (y=20, x=10, 20, ... 90) : (Note scalar extension of y-coor-
dinate)

'F.M1' ⎕WC 'Marker' (20(10×⍳9))

Draw "+" symbols at each corner of a box :

Y ← 10 10 50 50
X ← 10 50 50 10
'F.M1' ⎕WC 'Marker' (Y X) 1

Ditto, but draw them 10% high :

'F.M1' ⎕WC 'Marker' (Y X) 1 10

Ditto, but use "*" symbols in green :

'F.M1' ⎕WC 'Marker' (Y X) 2 10 (0 255 0)

Chapter 2: A-Z Reference 358

Multiple Sets of Polymarkers
To draw multiple sets of polymarkers with a single name, Points is a nested vector
whose items are themselves 2-column matrices or 2-element nested vectors.

Style and Size may be simple scalars specifying a single type and/or size of symbol to
be used for all the sets of polymarkers, or vectors specifying different symbols and/or
sizes for each set.

FCol may be a single number or a single (enclosed) 3-element vector applying to all
the sets of polymarkers. Alternatively, FCol may be a vector whose elements refer to
each of the sets of polymarkers in turn. If so, the elements may be single numbers or
nested RGB triplets, or a combination of the two.

First make a Form :

'F' ⎕WC 'Form'

Draw a "⎕" at (10,20) and a "⋄" at (20,20) :

'F.M1' ⎕WC 'Marker'((1 2⍴10 20)(1 2⍴20 20)) (3 5)

Draw "+" symbols at each corner of one box and "○" symbols at each corner of
another

Y1 X1 ← (10 10 50 50) (10 50 50 10)
Y2 X2 ← (20 20 40 40) (20 40 40 20)
'F.M1' ⎕WC 'Marker' ((Y1 X1)(Y2 X2)) (1 6)

Ditto, but draw the "+" symbols with height 2% and the "○" symbols 5% :

'F.M1' ⎕WC 'Marker' ((Y1 X1)(Y2 X2)) (1 6) (2 5)

Ditto, but draw the "+" symbols in red and the "○" symbols in blue :

'F.M1' ⎕WC 'Marker' ((Y1 X1)(Y2 X2)) (1 6) (2 5)
('FCol' (255 0 0)(0 0 255))

Mask Property
Applies To: Cursor, Icon

Description

This property is used to specify how the bitmap for a Cursor or Icon interacts with the
pixels of the screen when it is displayed.

Chapter 2: A-Z Reference 359

When a Cursor or Icon is displayed, the colour of each pixel occupied by the object
on the screen is determined by :

l The colour specified by Bits via CMap
l The value of Mask
l The existing colour of the screen pixel

Mask is a boolean matrix with the same shape as the Bits property. See Cursor and
Icon objects for further details.

MaskCol Property
Applies To: Bitmap, Form

Description

Specifies the transparent colour for a Bitmap or Form.

MaskCol may be an integer scalar or a 3-element integer vector.

If MaskCol is 0 (the default), no transparent colour is defined.

If MaskCol is a negative scalar, it specifies a standard Windows colour. See Bcol for
details.

Otherwise, MaskCol is a 3-element vector of intergers in the range 0-255 that spec-
ifies the transparent colour in terms of RGB values (the intensity of the red, green and
blue components of colour).

For a Bitmap, if MaskCol is non-zero, any pixels specified with the same colour will
instead be displayed in whatever colour is underneath the Bitmap. This achieves sim-
ilar behaviour to that of an Icon.

For a Form, if MaskCol is non-zero, any of the contents of the Form that are specified
to be the same colour as MaskCol will be transparent. For example, if MaskCol is 255
0 0 (red), any red items contained in the Form will instead be transparent areas, dis-
playing whatever is behind them on the screen. Mouse events generated over such
transparent areas will be passed to any other windows behind them, and will not be
reported on the Form itself.

Chapter 2: A-Z Reference 360

Masked Property
Applies To: ImageList

Description

The Masked property specifies whether or not the ImageList will contain opaque or
transparent images. It may be 0, 1(the default) or 2.

Masked must be established when the ImageList is created by ⎕WC and may not sub-
sequently be altered. An inappropriate value ofMasked will cause the images to be
drawn incorrectly.

If Masked is 0, the ImageList expects opaque BitMap objects.

If Masked is 1, the ImageList expects low-colour (4-bit or 8-bit) Icon objects whose
transparency is defined by their Mask property.

If Masked is 2, the ImageList expects BitMap or Icon objects whose alpha channel
(the degree of transparency of each pixel) is encoded in their CBits property, along
with the colours.

MaxButton Property
Applies To: Form, SubForm

Description

This property determines whether or not a Form or a SubForm has a "maximise" but-
ton. Pressing this button will cause a Form to be resized to occupy the entire screen,
or a SubForm to occupy the entire area of its parent. Pressing it again will restore the
Form or SubForm to its original size. MaxButton is a single number with the value 0
(no maximise button) or 1 (maximise button is provided). The default is 1.

Note that MaxButton is independent of Sizeable, i.e. you can define a Form that can
be maximised but not resized. If any of the properties MaxButton, MinButton, Sys-
Menu and Sizeable are set to 1, the Form or SubForm will have a title bar.

Chapter 2: A-Z Reference 361

MaxDate Property
Applies To: Calendar, DateTimePicker

Description

The MaxDate property specifies the largest date that the user may select in a Cal-
endar object or in the calendar drop-down of a DateTimePicker.

MaxDate is an IDN value. Its default value is 11249470 which is the maximum date
that the Calendar can display.

MaxLength Property
Applies To: ButtonEdit, Edit, Spinner

Description

This property specifies the maximum number of characters that the user may enter in
a single-line Edit object (Style'Single') or in the edit field associated with a
Spinner. It does not apply to a multi-line Edit object (Style'Multi'). MaxLength
does not limit the length of the vector that you may assign to the Text property using
⎕WC or ⎕WS. However, if you overfill the field in this way, the user must delete
excess characters before the object will accept further input.

MaxSelCount Property
Applies To: Calendar

Description

The MaxSelCount property specifies the maximum number of contiguous days that
the user may select in a Calendar object.

MaxSelCount is an integer whose default value is 7.

MaxSelCount is ignored unless the Style property of the Calendar object is set to
'Multi'.

Chapter 2: A-Z Reference 362

MDIActivate Event 42
Applies To: SubForm

Description

This event is generated when the user activates a particular SubForm that is the child
of an MDIClient. This occurs when the user clicks the left mouse button in the Sub-
Form or selects it from the menu nominated for this purpose (see MDIMenu property).
You may also call MDIActivate as a method.

Note that this event is reported after the action has taken place and cannot be dis-
abled by returning 0 from a callback function or by setting its action code to ¯1.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 3-element vector as follows :

[1] Object ref or character vector

[2] Event 'MDIActivate' or 42

[3] Object name character vector

Note that the 3rd element of the event message is either an empty vector or contains
the name of the SubForm that was previously the active one in the same MDIClient.

MDIActive Property
Applies To: MDIClient

Description

This property contains the name of the SubForm owned by the MDIClient that is cur-
rently active. Only one SubFormmay be active at a time. You can switch between
SubForms in an MDI application under program control by setting this property with
⎕WS. You can also do this by generating an MDIActivate event.

See also MDIActiveObject property.

Chapter 2: A-Z Reference 363

MDIActiveObject Property
Applies To: MDIClient

Description

This property contains a ref to the SubForm owned by the MDIClient that is currently
active.

See also MDIActive property.

MDIArrange Method 112
Applies To: MDIClient

Description

This method causes the MDIClient object to organise the icons associated with any
minimised child Forms into regimented rows and columns. To permit the user to carry
out this action, it is recommended that a suitable callback function or expression is
attached to a MenuItem or Button. The callback function or expression should then
call MDIArrange.

The MDIArrange method is niladic.

MDICascade Method 110
Applies To: MDIClient

Description

This method causes the MDIClient object to organise its child Forms in an over-
lapping fashion. To permit the user to carry out this action, it is recommended that a
suitable callback function or expression is attached to a MenuItem or Button. The
callback function or expression should then call MDICascade.

The MDICascade method is niladic.

Chapter 2: A-Z Reference 364

MDIClient Object
Purpose: Implements Multiple Document Interface (MDI) behaviour.

Parents ActiveXControl, Form, SubForm

Children Circle, Ellipse, Font, Marker, Poly, Rect, SubForm, Text, Timer

Properties Type, Posn, Size, Coord, Border, Event, BCol, Picture, IconObj,
CursorObj, YRange, XRange, Data, Attach, EdgeStyle, Handle,
MDIActive, MDIActiveObject, Hint, HintObj, Tip, TipObj,
Translate, Accelerator, KeepOnClose, Redraw, TabIndex,
MethodList, ChildList, EventList, PropList

Methods Detach, MDICascade, MDITile, MDIArrange, GetTextSize,
Animate, GetFocus, ShowSIP

Events Close, Create, DragDrop, Configure, ContextMenu, DropFiles,
DropObjects, Expose, Help, KeyPress, GotFocus, LostFocus,
MouseDown, MouseUp, MouseMove, MouseDblClick,
MouseEnter, MouseLeave, MouseWheel, Select

Description

The multiple-document interface (MDI) is a document-oriented interface that is com-
monly used by word-processors, spreadsheets and other applications that deal with
documents. An MDI application allows the user to display multiple documents at the
same time, with each document displayed in its own window.

The MDIClient object is a container object that effectively specifies the client area
within the parent Form in which the SubForm are displayed. The MDIClient object
also imposes special MDI behaviour which is quite different from that where a Sub-
Form is simply the child of another Form.

By default, the MDIClient occupies the entire client area within its parent Form. This
is the area within the Form that is not occupied by CoolBars, MenuBars, ToolBars,
ToolControls, TabBars, TabControls and StatusBars. In most applications it is there-
fore not necessary to specify the position and size of the MDIClient object, although
you may do so if you want to reserve additional space in the parent Form for other
objects.

Each of the four sides of an MDIClient object is automatically attached to the cor-
responding side of its parent Form and maintains its position when the parent Form is
resized. This means that a default MDIClient always occupies the entire client area of
its parent Form, regardless of how the parent is resized.

Chapter 2: A-Z Reference 365

The appearance of the MDIClient may be changed using its Border, BCol and Picture
properties. The EdgeStyle property has no direct effect and is provided only to pass
on a value to its child Forms.

The MDIActive and MDIActiveObject properties contain the name of and a ref to
the SubForm that currently has the focus. You may set these properties as well as
query them.

You can call methods which cause the MDIClient to organise its child SubForms in
some way. These methods are as follows:

MDICascade Causes the MDIClient to organise its child Forms in an
overlapping manner.

MDITile Causes the MDIClient to arrange its child Forms as a row or
column.

MDIArrange Causes the MDIClient to arrange the icons associated with any
minimised child Forms in an orderly fashion.

MDIDeactivate Event 43
Applies To: SubForm

Description

This event is generated when the user activates a different SubForm that is the child
of an MDIClient, thereby de-activating the current one which causes this event. This
occurs when the user clicks the left mouse button in another SubForm or selects it
from the menu nominated for this purpose (see MDIMenu property). You may also
call MDIDeactivate as a method.

Note that this event is reported after the action has taken place and cannot be dis-
abled by returning 0 from a callback function or by setting its action code to ¯1.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 3-element vector as follows :

[1] Object ref or character vector

[2] Event 'MDIDeactivate' or 43

[3] Object name character vector

Note that the 3rd element of the event message contains the name of the SubForm
that has now been made the active one in the same MDIClient.

Chapter 2: A-Z Reference 366

MDIMenu Property
Applies To: MenuBar

Description

This property specifies the name of, or ref to, the Menu object that is nominated as
the "Window" menu in an MDI application. If such a menu is defined, the Captions
of all the child Forms are automatically added to it below any other Menu orMen-
uItem objects that the application has created directly. This list is separated from the
preceding items by a separator. The entry for the currently active SubForm is checked
and the user may switch between SubForms by selecting from this list.

Note that the additional separator and the items representing the list of child forms
are not Dyalog APL/W objects and may not be accessed by the application. If you
prefer to maintain your own "window list" you should not use this property.

MDITile Method 111
Applies To: MDIClient

Description

This method causes the MDIClient object to organise its child Forms as a row or col-
umn. To permit the user to carry out this action, it is recommended that a suitable call-
back function or expression is attached to a MenuItem or Button. The callback
function or expression should then call the MDITile method.

Note that because there are restrictions concerning the minimum height and width of
a window, MS-Windows does not necessarily respond as requested. If the
MDIClient is itself of insufficient size, or if it contains a large number of child Forms,
Windows may choose to tile the Forms in a row when a column was specified or
vice versa. It may also choose to ignore the event entirely.

The argument to MDITile is ⍬, or a single item as follows:

[1] Tile Mode 0 (vertical)
1 (horizontal)

If the argument is ⍬, the Tile Modedefaults to 0.

Chapter 2: A-Z Reference 367

Menu Object
Purpose: This is a pop-up object which allows the user to initiate an action

or to select an option using a "menu".

Parents ActiveXControl, Calendar, CoolBand, CoolBar, DateTimePicker,
Form, Grid, Menu, MenuBar, OLEServer, Root, StatusField,
SubForm, SysTrayItem, TCPSocket, ToolBar, ToolControl

Children Bitmap, Menu, MenuItem, Separator, Timer

Properties Type, Caption, Posn, Coord, Align, Active, Event, FontObj, FCol,
BCol, BtnPix, Data, EdgeStyle, Handle, Translate, Accelerator,
KeepOnClose, ImageListObj, ImageIndex, MethodList, ChildList,
EventList, PropList

Methods Detach, Wait

Events Close, Create, DropDown, Select

Description

For a Menu that is owned by a MenuBar or another Menu, the Caption property deter-
mines the text string that is displayed as the "choice". The Menu is then popped up
by the user clicking on this text. It is automatically popped down when the user
chooses an option (by selecting a MenuItem) or cancels the operation (by clicking
elsewhere).

If a Menu belongs to a Form, SubForm or is a top-level object, it must be popped up
by the application. This is commonly done in response to a MouseDown event. A
Menu is popped-up by calling ⎕DQ with only the name of the Menu as its argument.
The user may therefore not interact with any other object until a selection is made or
until the operation is cancelled. When either occurs, the Menu is automatically
popped down and de-activated, and its ⎕DQ terminates.

The Menu object does not have a Size property. Instead, its size is determined auto-
matically by its contents.

If a Menu is owned by a MenuBar or by another Menu, its position within its parent
is also calculated automatically, dependent on the order in which other related
objects are established. The Posn property may however be used to insert a new
Menu into an existing structure. For example, having defined three Menu objects as
children of a MenuBar, you can insert a fourth one between the first and the second
by specifying its Posn to be 2. Note that the value of Posn for the Menus that were
previously second and third will then be reset to 3 and 4 respectively.

Chapter 2: A-Z Reference 368

If a Menu is a child of a MenuBar which is itself a child of a Form or SubForm, the
Align property can be set to 'Right'. This is used to position a single Menu (or
MenuItem) at the rightmost end of a MenuBar. This does not apply if the MenuBar is
owned by a ToolControl.

The BtnPix property is used to display a picture in a Menu. BtnPix specifies the
names of, or refs to, three Bitmap objects. The first Bitmap is displayed when the
Menu does not have the focus (normal), the second when it does have the focus (high-
lighted). The third Bitmap is displayed when the Menu is made inactive
(Active property is 0). If Caption is also defined, it is displayed on top of the bitmaps.

If the Menu is a submenu (owned by a Menu), you may set its EdgeStyle property to
'Plinth'. This causes the Menu to take on an appearance that is similar to a push-
button and be raised when not selected and recessed when selected. Note that to ena-
ble 3-dimensional appearance, you must set EdgeStyle to something other than
'None' for all the objects above the Menu in the tree.

EdgeStyle, BtnPix, Font, FCol and BCol do not affect the appearance of a Menu if it
is the direct child of a MenuBar. However, the EdgeStyle property must be set to
something other than 'None' if you want its children Menu and MenuItem objects
to have a 3-dimensional appearance.

MenuBar Object
Purpose: Specifies a horizontal menu bar displayed at the top of a Form.

Parents ActiveXControl, Form, SubForm, ToolControl

Children Bitmap, Menu, MenuItem, Separator, Timer

Properties Type, Visible, Event, FontObj, Data, EdgeStyle, MDIMenu,
Handle, Translate, KeepOnClose, MethodList, ChildList, EventList,
PropList

Methods Detach

Events Close, Create

Description

Unless it is made invisible the MenuBar is always available to the user to initiate
actions or to select options. A MenuBar has a fixed position and size.

It is possible to have more than one MenuBar associated with the same Form or Sub-
Form, but only one of them should be Visible at any one time.

Chapter 2: A-Z Reference 369

The following example illustrates how a menu structure can be built up from a Menu-
Bar. For clarity, the example is indented, and the definition of the Event property is
omitted.

'F' ⎕WC 'Form' 'Menu Example'
'F.M '⎕WC 'MenuBar'
'F.M.FILE' ⎕WC 'Menu' '&File'
'F.M.MAT' ⎕WC 'Menu' '&Materials'
'F.M.MAT.B' ⎕WC 'MenuItem' '&Brick'
'F.M.MAT.C' ⎕WC 'MenuItem' '&Concrete'
'F.M.MAT.S' ⎕WC 'MenuItem' '&Stone'
'F.M.MAT.SEP' ⎕WC 'Separator'
'F.M.MAT.W' ⎕WC 'Menu' '&Wood'
'F.M.MAT.W.O' ⎕WC 'MenuItem' '&Oak'
'F.M.MAT.W.T' ⎕WC 'MenuItem' '&Teak'
'F.M.MAT.W.M' ⎕WC 'MenuItem' '&Mahogany'

Note that putting a Separator (either Style) in a MenuBar has the effect of breaking
the bar vertically, i.e. the next Menu orMenuItem you add will appear on the left-
hand side on the line below.

The EdgeStyle property has no effect on the appearance of a MenuBar or of a direct
child of a MenuBar. However, if you want the sub-menus to have a 3-dimensional
appearance, you must set the EdgeStyle property of the MenuBar to something other
than 'None'.

If the MenuBar is owned by a Form that is the parent of an MDIClient, you can set
the MDIMenu property to the name of the Menu you wish to nominate as the win-
dow menu. This menu will automatically be updated with the Captions of the child
SubForm and may be used to select the currently active one.

MenuItem Object
Purpose: This object allows the user to initiate an action or to select an

option from a menu.

Parents Menu, MenuBar

Children Bitmap, Timer

Properties Type, Caption, Posn, Style, Align, Active, Event, Checked,
FontObj, FCol, BCol, BtnPix, Data, EdgeStyle, Hint, HintObj, Tip,
TipObj, Translate, Accelerator, KeepOnClose, ImageIndex,
MethodList, ChildList, EventList, PropList

Methods Detach

Events Close, Create, Select

Chapter 2: A-Z Reference 370

Description

The Caption property determines the text string that is displayed in its parent as the
menu option. The size of a MenuItem is determined by the size of its Caption, or by
the size of the largest object (Menu, MenuItem or Separator) with the same parent.
The position of the MenuItem is normally determined by the order in which it is
created in relation to other objects with the same parent. However, you can use the
Posn property to insert a new MenuItem into an existing structure. For example, hav-
ing defined three MenuItem objects as children of a Menu, you can insert a fourth
one between the first and the second by specifying its Posn to be 2. Note that the
value of Posn for the MenuItems that were previously second and third will then be
reset to 3 and 4 respectively.

The Style property may be 'Check' (the default) or 'Radio'. Style determines the
type of graphic displayed alongside the Caption if the MenuItem is checked.

The Checked property is a single number with the value 0 or 1. 0 means not checked
(the default), 1 means checked and a tick mark or radio dot is placed alongside its
Caption. This property is frequently used to indicate which of a choice of options is
currently set.

If a MenuItem is a child of a MenuBar which is itself a child of a Form or SubForm,
the Align property can be set to 'Right'. This is used to position a single Men-
uItem (orMenu) at the rightmost end of a MenuBar. This does not apply if the Menu-
Bar is owned by a ToolControl.

If you set the EdgeStyle property to 'Plinth', the MenuItem will take on an
appearance that is similar to a pushbutton and be raised when not selected and
recessed when selected. Note that to enable 3-dimensional appearance, you must set
EdgeStyle to something other than 'None' for all the objects above the MenuItem
in the tree.

The BtnPix property is used to display a picture in a MenuItem. BtnPix specifies the
names of, or refs to, three Bitmap objects. The first Bitmap is displayed when the Men-
uItem does not have the focus (normal), the second when it does have the focus (high-
lighted). The third Bitmap is displayed when the MenuItem is made inactive (Active
property is 0). If Caption is also defined, it is displayed on top of the bitmaps.

Alternatively, you may display an image alongside the Caption using the ImageIn-
dex property. This selects a picture from the ImageList associated with the ImageL-
istObj property of the parent Menu.

EdgeStyle, BtnPix, FontObj, FCol and BCol are not effective if the MenuItem is the
direct child of a MenuBar.

A MenuItem generates a Select event (if enabled) when the user chooses it.

Chapter 2: A-Z Reference 371

Metafile Object
Purpose: This object represents a picture in Windows Metafile format.

Parents ActiveXControl, Bitmap, CoolBand, Form, Group, OLEServer,
Printer, PropertyPage, PropertySheet, Root, Static, SubForm,
TCPSocket, ToolBar, ToolControl

Children Circle, Ellipse, Font, Image, Marker, Poly, Rect, Text, Timer

Properties Type, File, Size, Coord, RealSize, Event, YRange, XRange, Data,
Handle, Translate, Accelerator, KeepOnClose, MethodList,
ChildList, EventList, PropList

Methods Detach, FileRead, FileWrite

Events Close, Create, Select

Description

The Windows Metafile is a mechanism for representing a picture in terms of a col-
lection of graphical components. Windows Metafiles are distributed in special files
(.WMF) fromwhich they are loaded into memory for use by an application. Once
loaded a Metafile is a Windows "resource" that can be used in a variety of ways. The
Metafile object represents this resource.

The File property specifies the name of a .WMF file from which the Metafile is to be
loaded or to which it is to be saved. If you specify File with ⎕WC the Metafile object
is loaded from it. If you specify File with ⎕WS no action takes place until you instruct
the Metafile object to re-initialise itself from the file or to save itself to the file. These
operations are performed using the FileRead and FileWrite methods. If you omit the
File property in the argument to ⎕WC or if you specify a null vector, the Metafile
object is initially empty. The following example loads the picture defined by the
GOLF.WMFMetafile that is distributed with Microsoft Office.

'GOLF' ⎕WC 'Metafile' 'C:\MSOFFICE\CLIPART\GOLF'

Whether or not the Metafile object is initialised from a file, you can add graphical
components to it by creating child objects. However the Metafile behaves like a Bit-
map object in that its children cannot be modified using ⎕WS nor can they be
removed using ⎕EX. The components of a Metafile that has been initialised from a
.WMF file also cannot be referenced in any way. It is therefore recommended that
you use unnamed objects when you create the graphical components of a Metafile.

Chapter 2: A-Z Reference 372

The following statements create an empty Metafile called MF and then draw a line
and circle in it.

'MF' ⎕WC 'Metafile'
'MF.' ⎕WC 'Poly' (50(10 90))
'MF.' ⎕WC 'Circle' (50 50) 30

Like the Bitmap, Icon, Font and Cursor objects, the Metafile is a resource that is not
visible until it is used. This is done by setting the Picture property of another object
(Form, Image, Static or SubForm) to the name of, or ref to, the Metafile object. For
example, to display the Metafile MF in a Form, you could type :

'TEST' ⎕WC 'FORM' ('Picture' 'MF')

You can also copy a Metafile object to the Windows Clipboard fromwhere it can be
pasted into another application. This is done by creating a Clipboard object and then
setting its MetafileObj property to the name of the Metafile object to be exported.
For example :

'CL' ⎕WC 'Clipboard'
'CL' ⎕WS 'MetafileObj' 'MF'

The FileWrite method may be used to save a Metafile object on a file. The following
statements save the Metafile MF in a file called TEST.WMF.

MF.File←TEST'
MF.FileWrite

The Size property determines the granularity of the Metafile. Its default value is the
size of its parent. If you intend to replay the Metafile at higher resolution, you should
set Size accordingly.

The RealSize property specifies the suggested size of a Metafile in units of 0.01mm.
Setting RealSize has the effect of making the Metafile placeable. Certain programs
(such as Word forWindows) only support placeable metafiles.

MetafileObj Property
Applies To: Clipboard

Description

This property is used to copy graphical data to and from the Windows clipboard
using the Windows Metafile format.

When you set the MetafileObj property of a Clipboard object to the name of the
Metafile object using ⎕WS its contents are copied to the Windows clipboard in Win-
dows Metafile format.

Chapter 2: A-Z Reference 373

To import a picture that has been stored in the Windows clipboard in Metafile format
you use ⎕WG. This returns a nested array whose elements correspond to the graphical
components of the picture. Each of the elements of the array may be used as the argu-
ments of ⎕WC to draw the corresponding component of the picture. For example, if
the picture stored in C:\MSOFFICE\CLIPART\BIRD.WMF is copied to the Win-
dows clipboard, it may be imported into Dyalog APL/W as follows :

BIRD ← 'CL' ⎕WG 'MetafileObj'
⍴BIRD

4

Each of the items in BIRD is a 2-element vector. The first element is a "dummy"
object name which you may use or ignore as you wish. The second element is an
array that defines a graphical object and is suitable as the right argument of ⎕WC. For
example :

2⊃4⊃BIRD
POLY 191 397 FSTYLE 0 FILLCOL 0 0 0 ...

190 402
187 406
182 409
176 410
172 409
168 406
165 402
164 397
165 391
168 387
172 384
176 383
182 384
187 387
190 391
191 397
189 395
191 397

From this array, you can rebuild the imported picture component by component,
either as a Metafile object or directly onto a Form, Static or another object. The fol-
lowing example draws the picture in a Form using the dummy names supplied.

'TEST' ⎕WC 'FORM' ('Coord' 'User')
'TEST' ⎕WS ('YRange' 0 1024)('XRange' 0 2048)
TEST.⎕WC/¨BIRD

Notice that the co-ordinates of each of the graphical components are typically
integers in a co-ordinate system that extends from 0 to 1024 in the y-direction and 0
to 2048 in the x-direction. The simplest way to draw the picture is therefore to set up
the same co-ordinate system on a Form as in the example above.

Chapter 2: A-Z Reference 374

MethodList Property
Applies To: ActiveXContainer, ActiveXControl, Animation, Bitmap,

BrowseBox, Button, ButtonEdit, Calendar, Circle, Clipboard,
ColorButton, Combo, ComboEx, CoolBand, CoolBar, Cursor,
DateTimePicker, Edit, Ellipse, FileBox, Font, Form, Grid, Group,
Icon, Image, ImageList, Label, List, ListView, Locator, Marker,
MDIClient, Menu, MenuBar, MenuItem, Metafile, MsgBox,
OCXClass, OLEClient, OLEServer, Poly, Printer, ProgressBar,
PropertyPage, PropertySheet, Rect, RichEdit, Root, Scroll,
Separator, SM, Spinner, Splitter, Static, StatusBar, StatusField,
SubForm, SysTrayItem, TabBar, TabBtn, TabButton, TabControl,
TCPSocket, Text, Timer, TipField, ToolBar, ToolButton,
ToolControl, TrackBar, TreeView, UpDown

Description

This property reports the names of all the methods supported by a particular COM
object or instance of an OLE control. It is a vector of character vectors returned by
⎕WG. It may not be set using ⎕WC or ⎕WS.

MinButton Property
Applies To: Form, SubForm

Description

This property determines whether or not a Form or SubForm has a "minimise" button.
Pressing this button will cause the Form or SubForm to be iconified. Pressing it again
will restore the Form to its original size. MinButton is a single number with the value
0 (no minimise button) or 1 (minimise button is provided). The default is 1.

Note that MinButton is independent of Sizeable, i.e. you can define a Form that can
be minimised but not resized.

If any of the properties MinButton, MaxButton, SysMenu, and Moveable are set to 1,
the Form or SubForm will have a title bar.

Chapter 2: A-Z Reference 375

MinDate Property
Applies To: Calendar, DateTimePicker

Description

The MinDate property specifies the smallest date that the user may select in a Cal-
endar or DateTimePicker object.

MinDate is an IDN value. Its default value is -109206 which is the minimum date
that the Calendar can display.

MonthDelta Property
Applies To: Calendar, DateTimePicker

Description

The MonthDelta property specifies the number of months by which a Calendar
object scrolls when the user clicks its scroll buttons.

MonthDelta is an integer or an empty vector (zilde). The latter means that the Cal-
endar object scrolls by the number of months that are currently displayed in its win-
dow. This is the default.

MouseDblClick Event 5
Applies To: ActiveXControl, Animation, Button, ButtonEdit, Calendar, Circle,

ColorButton, Combo, ComboEx, DateTimePicker, Edit, Ellipse,
Form, Group, Image, Label, List, ListView, Marker, MDIClient,
Poly, ProgressBar, PropertyPage, Rect, RichEdit, Scroll, SM,
Spinner, Static, StatusBar, StatusField, SubForm, SysTrayItem,
TabBar, TabBtn, Text, ToolBar, ToolButton, ToolControl,
TreeView

Description

If enabled, this event is reported when the user presses and then releases a mouse but-
ton twice within a short space of time. The duration of this time is set through the
Windows Control Panel.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 6-element vector as follows :

Chapter 2: A-Z Reference 376

[1] Object ref or character vector

[2] Event 'MouseDblClick' or 5

[3] Y y-position of mouse (number)

[4] X x-position of mouse (number)

[5] Button

button double clicked (number)
1 = left button
2 = right button
4 = middle button

[6] Shift State
sum of shift key codes (number)
1 = Shift key is down
2 = Ctrl key is down

In a graphical object (Circle, Ellipse, Image, Marker, Poly and Rect), the position of
the mouse is reported relative to the top-left corner of its bounding rectangle.

If you enable MouseDown and MouseUp events in addition to MouseDblClick
events, double-clicking a mouse button will generate the following sequence of
events :

1. MouseDown
2. MouseUp
3. MouseDblClick
4. MouseUp

MouseDown Event 1
Applies To: ActiveXControl, Animation, Button, ButtonEdit, Calendar, Circle,

ColorButton, Combo, ComboEx, DateTimePicker, Edit, Ellipse,
Form, Group, Image, Label, List, ListView, Marker, MDIClient,
Poly, ProgressBar, PropertyPage, Rect, RichEdit, Scroll, SM,
Spinner, Static, StatusBar, StatusField, SubForm, SysTrayItem,
TabBar, TabBtn, Text, ToolBar, ToolButton, ToolControl,
TrackBar, TreeView, UpDown

Description

If enabled, this event is reported when the user presses one of the mouse buttons. The
event message reported as the result of ⎕DQ, or supplied as the right argument to your
callback function, is a 6-element vector as follows :

Chapter 2: A-Z Reference 377

[1] Object ref or character vector

[2] Event 'MouseDown' or 1

[3] Y y-position of mouse (number)

[4] X x-position of mouse (number)

[5] Button

button pressed (number)
1 = left button
2 = right button
4 = middle button

[6] Shift State
sum of shift key codes (number)
1 = Shift key is down
2 = Ctrl key is down

If you enable this event it is advisable that you ALSO enable MouseUp events. Other-
wise, the slight delay in running your callback function will cause the down and up
sequence to be reversed.

In a graphical object (Circle, Ellipse, Image, Marker, Poly and Rect), the position of
the mouse is reported relative to the top-left corner of its bounding rectangle.

MouseEnter Event 6
Applies To: ActiveXControl, Animation, Button, ButtonEdit, Calendar,

ColorButton, Combo, ComboEx, DateTimePicker, Edit, Form, Grid,
Group, Label, List, ListView, MDIClient, ProgressBar,
PropertyPage, RichEdit, Scroll, SM, Spinner, Static, StatusBar,
SubForm, TabBar, ToolBar, ToolControl, TreeView, UpDown

Description

If enabled, this event is reported when the user moves the mouse pointer into (over)
an object. The event message reported as the result of ⎕DQ, or supplied as the right
argument to your callback function, is a 3-element vector as follows :

[1] Object ref or character vector

[2] Event 'MouseEnter' or 6

[3] Object name character vector (name of previous object)

Chapter 2: A-Z Reference 378

This event is generated when the user moves the mouse pointer across the boundary
and into an object. The first element of the event message is the name of the object
over which the mouse pointer now resides. The 3rd element of the event message con-
tains the name of the object that was previously under the mouse pointer, or is an
empty vector if the mouse pointer was not previously over a Dyalog APL/W object.

MouseLeave Event 7
Applies To: ActiveXControl, Animation, Button, ButtonEdit, Calendar,

ColorButton, Combo, ComboEx, DateTimePicker, Edit, Form, Grid,
Group, Label, List, ListView, MDIClient, ProgressBar,
PropertyPage, RichEdit, Scroll, SM, Spinner, Static, StatusBar,
SubForm, TabBar, ToolBar, ToolControl, TreeView, UpDown

Description

If enabled, this event is reported when the user moves the mouse pointer out of an
object. The event message reported as the result of ⎕DQ, or supplied as the right argu-
ment to your callback function, is a 3-element vector as follows :

[1] Object ref or character vector

[2] Event 'MouseLeave' or 7

[3] Object name character vector (name of new object)

This event is generated when the user moves the mouse pointer across the boundary
and away from an object. The first element of the event message contains the name of
the object that previously contained the mouse pointer and which generated the
event when it crossed its boundary. The third element contains the name of the object
which now contains the mouse pointer or is an empty vector if the mouse pointer is
not now over a Dyalog APL/W object.

Chapter 2: A-Z Reference 379

MouseMove Event 3
Applies To: ActiveXControl, Animation, Button, ButtonEdit, Calendar, Circle,

ColorButton, Combo, ComboEx, DateTimePicker, Edit, Ellipse,
Form, Group, Image, Label, List, ListView, Marker, MDIClient,
Poly, ProgressBar, PropertyPage, Rect, RichEdit, Scroll, Spinner,
Static, StatusBar, StatusField, SubForm, SysTrayItem, TabBar,
TabBtn, Text, ToolBar, ToolButton, ToolControl, TrackBar,
TreeView, UpDown

Description

If enabled, this event is reported when the user moves the mouse. The event message
reported as the result of ⎕DQ, or supplied as the right argument to your callback func-
tion, is a 6-element vector as follows :

[1] Object ref or character vector

[2] Event 'MouseMove' or 3

[3] Y y-position of mouse (number)

[4] X x-position of mouse (number)

[5] Button

button released (number)
1 = left button
2 = right button
4 = middle button

[6] Shift State
sum of shift key codes (number)
1 = Shift key is down
2 = Ctrl key is down

In a graphical object (Circle, Ellipse, Image, Marker, Poly and Rect), the position of
the mouse is reported relative to the top-left corner of its bounding rectangle.

Note that rapid movement of the mouse will not necessarily cause an overwhelming
number ofMouseMove events to be reported, as several small movements are auto-
matically combined into one large one.

Chapter 2: A-Z Reference 380

MouseUp Event 2
Applies To: ActiveXControl, Animation, Button, ButtonEdit, Calendar, Circle,

ColorButton, Combo, ComboEx, DateTimePicker, Edit, Ellipse,
Form, Group, Image, Label, List, ListView, Marker, MDIClient,
Poly, ProgressBar, PropertyPage, Rect, RichEdit, Scroll, SM,
Spinner, Static, StatusBar, StatusField, SubForm, SysTrayItem,
TabBar, TabBtn, Text, ToolBar, ToolButton, ToolControl,
TrackBar, TreeView, UpDown

Description

If enabled, this event is reported when the user releases one of the mouse buttons. The
event message reported as the result of ⎕DQ, or supplied as the right argument to your
callback function, is a 6-element vector as follows :

[1] Object ref or character vector

[2] Event 'MouseUp' or 3

[3] Y y-position of mouse (number)

[4] X x-position of mouse (number)

[5] Button

button released (number)
1 = left button
2 = right button
4 = middle button

[6] Shift State
sum of shift key codes (number)
1 = Shift key is down
2 = Ctrl key is down

In a graphical object (Circle, Ellipse, Image, Marker, Poly and Rect), the position of
the mouse is reported relative to the top-left corner of its bounding rectangle.

Chapter 2: A-Z Reference 381

MouseWheel Event 8
Applies To: ActiveXControl, Animation, Button, ButtonEdit, Calendar,

ColorButton, Combo, ComboEx, DateTimePicker, Edit, Form,
Group, Label, List, ListView, MDIClient, ProgressBar,
PropertyPage, RichEdit, Scroll, Spinner, Static, StatusBar, SubForm,
TabBar, ToolBar, ToolControl, TreeView

Description

If enabled, this event is reported when the user rotates the mouse wheel.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 9-element vector as follows :

[1] Object ref or character vector

[2] Event 'MouseWheel' or 8

[3] Y y-position of mouse (number)

[4] X x-position of mouse (number)

[5] Button

button pressed
1 = left button
2 = right button
4 = middle button

[6] Shift State
sum of shift key codes (number)
1 = Shift key is down
2 = Ctrl key is down

[7] Delta integer

[8] Lines integer

[9] Wheel Delta integer

The value ofDelta indicates the distance that the wheel is rotated, expressed in mul-
tiples or divisions ofWheel Delta. A positive value indicates that the wheel was
rotated forward, away from the user; a negative value indicates that the wheel was
rotated backward, toward the user.

Lines specifies the number of lines to scroll when the wheel is rotated by IMouse
Delta unit. A value of ¯1 indicates that a whole screen is to be scrolled. These values
are defined by the user's preferences (Control Panel/Mouse)

Chapter 2: A-Z Reference 382

Moveable Property
Applies To: Form, SubForm

Description

This property determines whether or not a Form or SubForm can be moved by the
user. It is a single number with the value 0 (Form cannot be moved) or 1 (Form is
moveable). If any of the properties MinButton, MaxButton, SysMenu, and Moveable
are set to 1, the Form or SubForm will have a title bar. However, a Form or SubForm
with a title bar is not necessarily moveable.

MsgBox Object
Purpose: Provides a "modal" dialog box for displaying messages, errors,

warnings and other information. The dialog box has a title, one or
more lines of text, and up to three buttons.

Parents ActiveXControl, Calendar, CoolBand, DateTimePicker, Form, Grid,
OLEServer, PropertyPage, PropertySheet, Root, SubForm,
TCPSocket, ToolBar, ToolControl

Children Timer

Properties Type, Caption, Text, Style, Btns, Default, Event, Data, EdgeStyle,
KeepOnClose, MethodList, ChildList, EventList, PropList

Methods Detach, Wait

Description

The Caption property determines the text displayed in the object's title bar.

The Text property determines the text to be displayed as the message.

The Style property determines the type of icon which is displayed. This is a character
vector with one of the following values :

'Msg' no icon (the default)

'Info' information message icon

'Query' query (question) icon

'Warn' warning icon

'Error' critical error icon

Chapter 2: A-Z Reference 383

The Btns property determines the set of buttons to be displayed. It is a simple vector
(one button) or a matrix with up to 3 rows, or a vector of up to 3 character vectors
specifying the captions for up to 3 buttons. MS-Windows restricts you to a fixed set
of button captions which are described below. However, the property has been
designed more generally to be useful under different GUIs and perhaps later revisions
ofWindows. The buttons are arranged along the bottom of the dialog box in the
order specified.

The Btns property may specify one of six sets of buttons as follows.

l 'OK'
l 'OK' 'CANCEL'
l 'RETRY' 'CANCEL'
l 'YES' 'NO'
l 'YES' 'NO' 'CANCEL'
l 'ABORT' 'RETRY' 'IGNORE'

If any other combination is specified, ⎕WC and ⎕WS will report a DOMAIN ERROR.
The names of the buttons are however case-insensitive, so the system will accept
'ok', 'Ok', 'oK' or 'OK'. If Btns is not specified, it assumes a default according
to Style as follows :

Style Btns

'Msg'or'Info' 'OK'

'Warn'or'Error' 'OK' 'CANCEL'

'Query' 'YES' 'NO'

The Default property may be used to determine which of the buttons is the "default"
button, i.e. the one which initially has the focus and is "selected" when the user
presses the Enter key. It has the value 1, 2 or 3. If Default is not specified, the first but-
ton is the "default" button. Note that if the user switches focus to another button and
presses Enter, this action selects the button with the focus.

Like a pop-up (floating) Menu, the MsgBox object is unusual in that it is strictly
modal. It is created by ⎕WC in the normal way, but at that stage is invisible and inac-
tive. It is activated ONLY when ⎕DQ is called with the name of the MsgBox as the
argument. When this is done, the MsgBox object pops up and is activated. Because
there is no other object specified in the argument to ⎕DQ, all other objects are de-acti-
vated. The only thing that the user can do (within the APL application) is to press
one of the buttons in the MsgBox. When this happens, the MsgBox automatically
pops down, the callback function (if any) is fired, and then ⎕DQ terminates.

Chapter 2: A-Z Reference 384

Notice that the position and size of the MsgBox are determined by Windows and are
fixed, although the MsgBox may be moved by the user after it has been displayed.

The MsgBox object generates one of three events; MsgBtn1 (61), MsgBtn2 (62), or
MsgBtn3 (63) depending upon which button is pressed.

Caption←'Default MsgBox' ⋄ Text←'Hello World'
'Msg' ⎕WC 'MsgBox' Caption Text ⋄ ⎕DQ 'Msg'

Caption←'Information MsgBox' ⋄ Text←'Update Completed'
'Msg' ⎕WC 'MsgBox' Caption Text 'Info' ⋄ ⎕DQ 'Msg'

Caption←'Query MsgBox' ⋄ Text←'Save Changes'
'Msg' ⎕WC 'MsgBox' Caption Text 'Query' ⋄ ⎕DQ 'Msg'

Caption←'Warning MsgBox'
Text←'Calculations will take 10 minutes'
'Msg' ⎕WC 'MsgBox' Caption Text 'Warn' ⋄ ⎕DQ 'Msg'

Caption←'Error MsgBox'
Text←'Data out of range'
'Msg' ⎕WC 'MsgBox' Caption Text 'Error' ⋄ ⎕DQ 'Msg'

Caption←'Custom MsgBox'
Text←⊂'You can have a multi-line'
Text,←⊂'message if you want one'
B←'ABORT' 'RETRY' 'IGNORE'
'Msg' ⎕WC 'MsgBox' Caption Text 'Info' B ⋄ ⎕DQ 'Msg'

MsgBtn1 Event 61
Applies To: MsgBox

Description

If enabled, this event is reported when the user responds to a MsgBox object by click-
ing its first (leftmost) button. The event message reported as the result of ⎕DQ, or sup-
plied as the right argument to your callback function, is a 2-element vector as
follows:

[1] Object ref or character vector

[2] Event 'MsgBtn1' or 61

Chapter 2: A-Z Reference 385

MsgBtn2 Event 62
Applies To: MsgBox

Description

If enabled, this event is reported when the user responds to a MsgBox object by click-
ing its second (from the left) button. The event message reported as the result of ⎕DQ,
or supplied as the right argument to your callback function, is a 2-element vector as
follows:

[1] Object ref or character vector

[2] Event 'MsgBtn2' or 62

MsgBtn3 Event 63
Applies To: MsgBox

Description

If enabled, this event is reported when the user responds to a MsgBox object by click-
ing its third (from the left) button. The event message reported as the result of ⎕DQ, or
supplied as the right argument to your callback function, is a 2-element vector as fol-
lows:

[1] Object ref or character vector

[2] Event 'MsgBtn3' or 63

MultiColumn Property
Applies To: List

Description

MultiColumn is boolean and specifies whether or not a List object displays its items
in a single column (0, the default) or in multiple columns (1). MultiColumn may only
be set by ⎕WC and cannot be changed using ⎕WS after the object has been created.
Note that a MultiColumn List will use the minimum number of columns that are
required to make the items fit within it and will reconfigure itself automatically when
resized.

Chapter 2: A-Z Reference 386

The following example illustrates its use.

'F'⎕WC'Form' 'MultiColumn List'('Size' 23 32)
'F.L'⎕WC'LIST' AIRPORTS (0 0)(100 100)

('MultiColumn' 1)

MultiLine Property
Applies To: TabControl, ToolControl

Description

The MultiLine property determines whether or not the tabs or buttons will be
arranged in multiple flights or multiple rows/columns in a TabControl or Tool-
Control object.

MultiLine is a single number with the value 0 (single flight of tabs, or single row/col-
umn of buttons) or 1 (multiple flights of tabs or multiple rows/columns of buttons);
the default is 0.

If MultiLine is 0 and there are more tabs or buttons than will fit in the space pro-
vided, the TabControl displays an UpDown which allows the user to scroll.

However, If MultiLine is 0 in a ToolControl, the buttons are clipped, and the user
may have to resize the object to see them all.

See also: Justify, TabSize.

Chapter 2: A-Z Reference 387

MultiSelect Property
Applies To: TabControl

Description

The TabControl property specifies whether or not the user can select more than one
button in a TabControl at the same time, by holding down the Ctrl key when click-
ing.

MultiSelect is a single number with the value 0 (only 1 button may be selected) or 1
(more than one button may be selected); the default is 0.

MultiSelect apples only if the Style of the TabControl is 'Buttons' or
'FlatButtons', and is ignored if Style is 'Tabs'.

Note that the State property of the associated TabButton object reports whether or
not the button is selected.

NameFromHandle Method 136
Applies To: Root

Description

This method is used to obtain the name of a particular object from the value of its
Handle property.

The argument to NameFromHandle is a single item as follows:

[1] Handle The value of the Handle property from an existing object.

The result is a character vector containing the name of the object.

Chapter 2: A-Z Reference 388

NetClient Object
Purpose: The NetClient object represents an instance of a Microsoft .Net

class.

Parents NetType, Root

Children Timer

Description

The NetClient object represents an instance of a .Net class.

Normally, you create a NetClient object using the Newmethod. For example:

⎕USING ←'System'
DT1←DateTime.New 2002 4 30
DT1.Type

NetClient

If, for any reason, you are unable to use the Newmethod, you may create a NetClient
object using ⎕WC. In this case, the ClassName property specifies the full name of the
.Net class, and the ConstructorArgs property specifies the arguments for the con-
structor function if required.

⎕USING ←'System'
'DT2'⎕WC'NETCLIENT' 'System.DateTime'(1949 4 30)
DT2.(Type ClassName ConstructorArgs)

NetClient System.DateTime 1949 4 30

Chapter 2: A-Z Reference 389

NetType Object
Purpose: The NetType object is used to export a namespace as a

Microsoft.Net class.

Parents Root

Children Bitmap, NetClient, TCPSocket, Timer

Properties BaseClass

Methods

Events

Description

The NetType object allows you to export an APL namespace as a .Net class that can
be accessed by any conforming .Net client application.

The BaseClass property specifies the name of the .Net class from which the specified
NetType object inherits. The default is System.Object.

When you create a NetType object, the name of its parent namespace specifies the
name of the corresponding Microsoft .Net Namespace to which the NetType class
belongs. If the NetType is created as a child of root, the corresponding Microsoft .Net
Namespace is unnamed.

NewLine Property
Applies To: CoolBand

Description

The NewLine property specifies whether or not a CoolBand occupies the same row
as an existing CoolBand, or is displayed on a new line within its CoolBar parent.

NewLine is a single number with the value 0 (same row) or 1 (new row); the default
is 1.

The value of NewLine in the first CoolBand in a CoolBar is always 1, even if you
specify it to be 0.

When the user drags a CoolBand to another row, the value of its NewLine property,
and that of any other CoolBand affected by the move, will change.

You may move a CoolBand to the previous or next row by changing its NewLine
property (using ⎕WS)from 1 to 0, or from 0 to 1 respectively.

Chapter 2: A-Z Reference 390

NewPage Method 102
Applies To: Printer

Description

This method causes a Printer to start a new page

The NewPage method is niladic.

If you attach a callback function to this event and have it return a value of 0, the page
throw will not occur.

Note Property
Applies To: Button

Description

The Note property applies only to a Button whose Style is 'CommandLink'.

It is a character vector (by default empty) that specifies text to be displayed below the
Caption.

Example:
'F'⎕WC'Form' 'CommandLink Button'
'F.clb'⎕WC'Button' 'Visit Us'('Style' 'CommandLink')
F.clb.Size←80 200
F.clb.Note←'www.dyalog.com'

Chapter 2: A-Z Reference 391

OCXClass Object
Purpose: This object provides access to OLE (ActiveX) Controls.

Parents ActiveXControl, CoolBand, Form, Grid, OLEServer, PropertyPage,
Root, SubForm, TCPSocket, ToolBar, ToolControl

Properties Type, ClassName, Event, Data, Translate, ClassID, KeepOnClose,
TypeList, HelpFile, ToolboxBitmap, LicenseKey, QueueEvents,
MethodList, ChildList, EventList, PropList

Methods Detach, GetPropertyInfo, GetEventInfo, GetMethodInfo,
GetTypeInfo, SetPropertyInfo, SetMethodInfo, ShowHelp,
ShowProperties, Browse, OLEAddEventSink,
OLEDeleteEventSink, OLEListEventSinks

Events

Description

This object loads an OLE Control into memory and defines a new class of object asso-
ciated with it. The name of the new class is the name specified by the left argument of
⎕WC You may create an instance of the newly defined class using the name you
assigned to the OCXClass object as the Type property.

Once you have defined a new OCXClass, the properties, events and methods it sup-
ports may be obtained from its PropList, EventList and MethodList properties. These
are the properties, events and methods defined for the OLE control by its author.

The QueueEvents property determines how events reported by the ActiveX control
are handled.

To find out how to use the OLE control, you must consult the appropriate doc-
umentation. However, a great deal of information about it can be obtained using the
GetPropertyInfo, GetEventInfo, and GetMethodInfo methods.

Chapter 2: A-Z Reference 392

OKButton Property
Applies To: Form

Description

OKButton applies only to PocketAPL. In versions of Dyalog APL for other plat-
forms, it has no effect.

This is a Boolean property that specifies whether or not an [OK] button appears in
the title bar of a Form. Its default value is 0.

OKButton may only be specified when the Form is created using ⎕WC; you cannot
subsequently change its value.

If OKButton is 1, the Form displays an [OK] button in its title bar in place of the
standard [X] button.

When the user clicks the [OK] button, the system will press the default button, which
is specified by the Default property of a Button on the Form.

If there is no default button, the Form will generate a Close event.

OLEAddEventSink Method 540
Applies To: OCXClass, OLEClient

Description

This method connects a named event sink to a COM object and adds the events
defined by that event sink to the EventList property of the associated namespace.

The argument to OLEAddEventSink is a single item as follows:

[1] Event sink name character vector

The result is a number that represents the handle of the event sink. This may be sub-
sequently required.

Chapter 2: A-Z Reference 393

OLEClient Object
Purpose: The OLEClient object provides access to an OLE Automation

Server

Parents ActiveXControl, CoolBand, Form, OLEServer, Root, TCPSocket

Children Form, TCPSocket, Timer

Properties Type, ClassName, Event, Data, Handle, ClassID, KeepOnClose,
TypeList, HelpFile, LastError, Locale, AutoBrowse, QueueEvents,
InstanceMode, MethodList, ChildList, EventList, PropList

Methods Browse, Detach, GetEventInfo, GetMethodInfo, GetPropertyInfo,
GetTypeInfo, OLEAddEventSink, OLEDeleteEventSink,
OLEListEventSinks, OLEQueryInterface, SetMethodInfo,
SetPropertyInfo, ShowHelp

Events

Description

The OLEClient object allows you to control OLE Servers, which may be written in a
variety of different programming languages, including Dyalog APL itself.

The ClassName property specifies the name of the OLE object to which the new
object named by the left argument of ⎕WCis to be connected. A list of all the OLE
Server objects installed on your systemmay be obtained from the OLEServers prop-
erty of Root. ClassName may only be specified by ⎕WC.

Alternatively, the OLE object may be identified by the ClassID property.

The AutoBrowse property and Browse method are no longer relevant and are
ignored. They are retained only for backwards compatibility with previous versions
of Dyalog APL.

Note that the PropList and MethodList properties of an OLEClient instance contain
the names of the properties and methods exposed by the corresponding OLE Object
in addition to the generic properties and methods of the OLEClient class.

If you call an OLE method with an invalid parameter, set a read-only property, or
assign it an invalid value, the LastError property of the OLEClient and Root objects
will contain error information generated by OLE.

Chapter 2: A-Z Reference 394

OLEControls Property
Applies To: Root

Description

The OLEControls property reports a list of the OLE Controls installed on your com-
puter. This information is obtained from the Windows registry. Its value is a nested
vector with one element per OLE Control. Each element is a vector of 2-element char-
acter vectors. The first is the name of the OLE Control; the second is its class iden-
tifier.

OLEDeleteEventSink Method 541
Applies To: OCXClass, OLEClient

Description

This method disconnects a named event sink from a COM object and removes the
events defined by that event sink from the EventList property of the associated names-
pace.

This method may be used to remove an event sink that was established automatically
when the OLE object was created.

The argument to OLEDeleteEventSink is a single item as follows:

[1] Event sink name character vector

OLEListEventSinks Method 542
Applies To: OCXClass, OLEClient

Description

This method returns the names of event sinks that are currently connected to a COM
object.

The list contains the names of all the event sinks that were connected automatically
when the object was created, together with any that you have added subsequently
using OLEAddEventSink.

Chapter 2: A-Z Reference 395

The OLEListEventSinks method is niladic.

The result is a vector of character vectors containing the names of the event sinks con-
nected to the object.

OLEQueryInterface Method 543
Applies To: ActiveXContainer, OLEClient

Description

This method is used to obtain the methods and properties associated with a particular
interface that is provided by a COM object. An interface is simply a pointer to a
table of methods (not properties) that are exported by an object.

Note that methods and properties exported using the standard IDispatch interface are
established automatically when the object is created. OLEQueryInterface is required
only to support alternative or additional interfaces that the object may implement.

The argument to OLEQueryInterface is a single item as follows:

[1] Interface name character vector

The result is a namespace.

It is normal, although not strictly required, that the new namespace be a child of the
one for which the method is run.

Note that if the object does not support a type library, the new namespace will be
empty and you will have to establish functions corresponding to the methods
exported by the interface using SetMethodInfo.

OLERegister Method 530
Applies To: OLEServer

Description

This method is used to register an OLEServer object and may be used to install Dya-
log APL OLE Servers as part of a run-time installation.

The OLERegister method is niladic.

Chapter 2: A-Z Reference 396

OLEServer Object
Purpose: The OLEServer object is used to establish a namespace as an OLE

Server object that can be used by an OLE Automation client.

Parents ActiveXControl, Form, OLEServer, Root

Children Bitmap, BrowseBox, Clipboard, Cursor, FileBox, Font, Form, Icon,
ImageList, Menu, Metafile, MsgBox, OCXClass, OLEClient,
OLEServer, Printer, PropertySheet, TCPSocket, Timer, TipField

Properties Type, ClassName, Event, Data, Handle, ExportedFns,
ExportedVars, ClassID, KeepOnClose, TypeLibID, TypeLibFile,
ServerVersion, LastError, RunMode, ShowSession, MethodList,
ChildList, EventList, PropList

Methods Detach, OLERegister, OLEUnregister, SetFnInfo, SetVarInfo,
SetEventInfo

Events Close, Create

Description

The OLEServer object allows you to export an APL namespace so that its functions
and variables become directly accessible to an OLE Automation client application
such as Microsoft Visual Basic or Microsoft Excel.

An OLEServer may be saved as an out-of-processOLE server (in a workspace) or as
an in-processOLE server (in a DLL). See Interface Guide for details.

When you create an OLEServer object, APL allocates various OLE attributes to it.
For example, the CLSID, which uniquely identifies the object, is assigned at this
stage. However, the object is not actually registered until you execute)SAVE.

Registration involves updating the Windows registry with information about the
object itself, such as its name, the command required to obtain it and so forth. Reg-
istration also records information about all of the functions and variables that your
object exposes. Registration is therefore a non-trivial operation and should be
delayed until the point when you are ready to test your OLEServer.

You may create an empty OLEServer object and then define functions and variables
within it. Alternatively, you may convert an existing namespace which is already
populated with functions and variables. The latter method is recommended as it
implies less registry activity during the development of the object.

Chapter 2: A-Z Reference 397

The ExportedFns and ExportedVars properties specify the names of the functions and
variables that will be exposed by the object to OLE clients.

The RunMode property is a character vector that specifies how the object serves mul-
tiple clients. It may be 'MultiUse'(the default), 'SingleUse', or
'RunningObject'.

The ShowSession property is either 0 (the default) or 1 and specifies whether or not
the APL Session window is displayed when the first instance of the OLEServer is
created.

RunMode and ShowSession apply only to out-of-processOLEServers.

OLEServers Property
Applies To: Root

Description

The OLEServers property is a read-only property that reports the names and CLSIDs
of all the OLE Automation servers installed on your computer. This information
comes from the Windows registry.

Its value is a nested vector with one element per OLE Server.

Each element is a vector of 2-element character vectors. The first is the name of the
OLE Server; the second is its class identifier or CLSID which is a type of GUID.

OLEUnregister Method 531
Applies To: OLEServer

Description

This method is used to unregister an OLEServer object that has previously been
saved by Dyalog APL.

The OLEUnregister method is niladic.

This method removes all traces of the object from the Windows registry and erases its
Type Library file.

Note that the name of the object removed from the registry is the name of the OLE-
Server object prefixed by the string "dyalog."

Chapter 2: A-Z Reference 398

OnTop Property
Applies To: Circle, Ellipse, Form, Image, Marker, Poly, PropertySheet, Rect,

SubForm, TabBar, Text, ToolBar

Description

This property may be used to cause a Form or SubForm to be displayed on top of all
other windows, even those owned by other applications.

Normally, Forms are brought to the front when they receive the input focus. Forms
that do not have the input focus may be partially obscured by the one that does. If
OnTop is set to 1, the Form or SubForm remains at the front even if it doesn't have the
input focus. Indeed, it may partially obscure the Form that does have the focus. The
default value is 0 (normal).

More than one Formmay have OnTop set to 1. If so, these Forms appear on top of all
others, but may overlap one another. Other applications may also have windows with
this property.

For a graphical object, the OnTop property controls how it is drawn in a Grid relative
to the grid lines and cell text. OnTop is applicable only if the graphic is the child of a
Grid and is otherwise ignored.

0 Graphical object is drawn behind grid lines and cell text

1 Graphical object is drawn on top of grid lines but behind cell text

2 Graphical object is drawn on top of grid lines and cell text

Orientation Property
Applies To: Printer

Description

The Orientation property specifies the orientation of the paper on a Printer object. It
is a simple character vector which is either 'Portrait' or 'Landscape'. When
you create a Printer object, the default value of the Orientation property is deter-
mined by the current setting for the corresponding printer device.

The effect of changing Orientation using ⎕WS is to spool the current page (effectively
the same as sending a NewPage event) and then to change the orientation of the
paper. Note that the values of the first 2 elements of the DevCaps property change
accordingly. You may also set Orientation when you create the Printer object with
⎕WC. In neither case does the global setting for the printer device change.

Chapter 2: A-Z Reference 399

OtherButton Property
Applies To: ColorButton

Description

The OtherButton property is Boolean and specifies whether or not the user can select
a colour from a ColorButton object using the Windows colour selection dialog box.

If OtherButton is 1 (the default), the final row of the colour selection drop-down con-
tains a button labelled "Other…". If the user clicks this button, the standard Windows
colour selection dialog box is displayed, allowing the user to select any colour that
the computer can render.

If OtherButton is 0, the button labelled "Other…" is not present and the user is
restricted to the choice of colours provided by the DefaultColors property.

OverflowChar Property
Applies To: Grid

Description

The OverflowChar property specifies the character to be displayed in place of the dig-
its when a numeric value cannot be displayed in its entirety in a Grid cell. If the
value of OverflowChar is an empty vector (the default) the data in a numeric cell is
simply clipped if it is too wide to fit in the cell. For example:

'F'⎕WC'Form'('Coord' 'Pixel')('Size' 101 296)
'F'⎕WS'Caption' 'OverflowChar Property'
DATA←3 3⍴12 123456789 13 9876543 99 456 10 99 1236.893
'F.G'⎕WC'Grid'DATA(0 0)(101 296)
'F.G'⎕WS'CellWidths' 65
'F.G'⎕WS'OverflowChar' '#'

Chapter 2: A-Z Reference 400

The same Grid without OverflowChar being defined appears as follows. Notice how
the numbers have been truncated

PageActivate Event 360
Applies To: PropertyPage

Description

If enabled, this event is reported when the user switches from one PropertyPage to
another in a PropertySheet object. This event is reported by the new page after the
page change has occurred and the page change may not be disabled by a callback
function.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 2-element vector as follows :

[1] Object ref or character vector

[2] Event 'PageActivate' or 360

You may select a particular page by calling PageActivate as a method, or by setting
the PageActive or PageActiveObject property of the PropertySheet.

PageActive Property
Applies To: PropertySheet

Description

The PageActive property specifies the name of the current PropertyPage in a Prop-
ertySheet. You may select a particular page by setting this property or by generating
a PageActivate event.

See also or PageActiveObject.

Chapter 2: A-Z Reference 401

PageActiveObject Property
Applies To: PropertySheet

Description

The PageActiveObject property specifies a ref to the current PropertyPage in a Prop-
ertySheet. You may select a particular page by setting this property or by generating
a PageActivate event.

See also or PageActive.

PageApply Event 350
Applies To: PropertyPage

Description

If enabled, this event is reported when the user clicks the Apply button in a Prop-
ertySheet. Note however, that the event is actually reported by each of its Prop-
ertyPage objects whose Changed property is currently 1, i.e. the event is reported by
each of the pages that the user has changed.

The default processing for this event is to set the Changed property of the Prop-
ertyPage to 0. If you disable the event or return a 0 from a callback function, the
Changed property is not reset. Note that the Apply button in a PropertySheet is
active if the value of the Changed property of any of the PropertyPage objects is 1.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 2-element vector as follows :

[1] Object ref or character vector

[2] Event 'PageApply' or 350

Chapter 2: A-Z Reference 402

PageBack Event 353
Applies To: PropertyPage

Description

If enabled, this event is reported when the user switches from one PropertyPage to
another in a Wizard PropertySheet object by clicking its Back button. This event is
reported by the old page after the page change has occurred and the page change
may not be disabled by a callback function.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 2-element vector as follows :

[1] Object ref or character vector

[2] Event 'PageBack' or 353

PageCancel Event 351
Applies To: PropertyPage

Description

If enabled, this event is reported when the user presses the Cancel button in a Prop-
ertySheet object and is reported by the current PropertyPage. This event is reported
for information only and may not be disabled by a callback function. However, the
operation will also generate a Close event reported by the PropertySheet itself that
may be disabled by a callback.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 2-element vector as follows :

[1] Object ref or character vector

[2] Event 'PageCancel' or 351

Chapter 2: A-Z Reference 403

PageChanged Event 356
Applies To: PropertyPage

Description

If enabled, this event is reported when the Changed property of a PropertyPage is
altered by user action. It is not reported if you reset the Changed property using ⎕WS.

The Changed property is reset by two separate user actions. It is set to 1 when the
user alters any of the controls on the PropertyPage. It is reset to 0 when the user clicks
the Apply button, although this action may be disabled by a callback function on the
PageApply event.

The PageChanged event is reported for information only and may not itself be dis-
abled or affected by a callback function.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 3-element vector as follows :

[1] Object ref or character vector

[2] Event 'PageChanged' or 356

[3] Changed value New value for the Changed property (0 or 1).

PageDeactivate Event 361
Applies To: PropertyPage

Description

If enabled, this event is reported when the user switches from one PropertyPage to
another in a PropertySheet object. This event is reported by the old page after the
page change has occurred and the page change may not be disabled by a callback
function.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 2-element vector as follows :

[1] Object ref or character vector

[2] Event 'PageDeactivate' or 361

Chapter 2: A-Z Reference 404

PageFinish Event 355
Applies To: PropertyPage

Description

If enabled, this event is reported when the user clicks the Finish button in a Wizard
PropertySheet. This event is reported by current (last) PropertyPage. The event is
reported for information only and cannot be affected by a callback function.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 2-element vector as follows :

[1] Object ref or character vector

[2] Event 'PageFinish' or 355

PageHelp Event 352
Applies To: PropertyPage

Description

If enabled, this event is reported when the user clicks the Help button in a Wizard
PropertySheet. This event is reported by current PropertyPage. The event is reported
for information only and cannot be affected by a callback function.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 2-element vector as follows :

[1] Object ref or character vector

[2] Event 'PageHelp' or 352

Chapter 2: A-Z Reference 405

PageNext Event 354
Applies To: PropertyPage

Description

If enabled, this event is reported when the user switches from one PropertyPage to
another in a Wizard PropertySheet object by clicking its Next button. This event is
reported by the old page after the page change has occurred and the page change
may not be disabled by a callback function.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 2-element vector as follows :

[1] Object ref or character vector

[2] Event 'PageNext' or 354

PageSize Property
Applies To: Form, Scroll, SubForm

Description

For a Form and SubForm, the PageSize property is a 2-element integer vector which
specifies the size of the thumb in the vertical and horizontal scrollbars respectively.

For a Scroll object it is a single integer.

If PageSize is 0 (the default) it specifies the default thumb. Otherwise, PageSize is
expressed in proportion to the corresponding value of Range. For example, if Range
is 1000, setting PageSize to 100 will obtain a thumb which is approximately 10% of
the height or length of the scrollbar.

Chapter 2: A-Z Reference 406

PageWidth Property
Applies To: RichEdit

Description

The PageWidth property specifies the width of the page in a RichEdit object and is
the dimension that is used to apply text wrapping and paragraph formatting to the
text in the object. PageWidth is a single integer value specified in Twips.

The default value of PageWidth is 0 which disables text wrapping. You may find it
convenient to set PageWidth to the width of the RichEdit window or to a value that
is appropriate for your printer.

PaperSize Property
Applies To: Printer

Description

The PaperSize property specifies the size of paper to be used for printing

PaperSize may be a character vector containing the name of the paper size (eg.
'Legal 8 1/2 x 14 in' or 'A4 210 x 297 mm') or a 2-element integer vec-
tor that specifies the desired height and width of the paper in tenths of a millimetre
(e.g. 3556 2159 or 2970 2099).

The default value of PaperSize is the name of the paper size associated with the cur-
rent printer settings.

You can obtain a list of supported paper sizes from the PaperSizes property.

Chapter 2: A-Z Reference 407

PaperSizes Property
Applies To: Printer

Description

The PaperSizes property is a read-only property that provides the names and dimen-
sions of the various different paper sizes supported by the printer associated with the
Printer object.

PaperSizes is a nested vector of 2-element vectors which contain the name, and
height and width of each paper size respectively. Dimensions are reported in tenths
of a millimetre.

You may set or query the current paper size using the PaperSize property.

PaperSource Property
Applies To: Printer

Description

The PaperSource property is a character vector that specifies the name of the paper
bin to be used as the paper source for printing.

An empty character vector (the default) means the default bin, Otherwise, Paper-
Source must be a member of the PaperSources property.

Chapter 2: A-Z Reference 408

PaperSources Property
Applies To: Printer

Description

The PaperSources property is a read-only property that provides the names of the
paper bins installed on the printer associated with the Printer object. It is a vector of
character vectors.

You may select which of the bins is to be used by specifying the PaperSource prop-
erty.

ParaFormat Property
Applies To: RichEdit

Description

The ParaFormat property describes the current paragraph format or the paragraph for-
mat of the currently selected text in a RichEdit object. It is a 6-element nested array
structured as follows:

[1]
A character vector that specifies the text alignment. This may be
'Left' (the default), 'Right' or 'Centre'

[2]
The size of the indentation of the first line in the paragraph measured
from the left margin in Twips.

[3]
The size of the horizontal offset of the start of the second and
subsequent lines. This is measured in Twips relative to the first line
indentation specified in element [2].

[4]
The size of the right indentation measured in Twips from the right
margin.

[5]
An integer value specifying the bullet/numbering option. 0 mean no
numbering, 1 means bullets.

[6]
An integer vector specifying the size of any tab stops measured in
Twips from the left margin and specified in ascending order.

Chapter 2: A-Z Reference 409

If there is no text selected, ParaFormat specifies the current paragraph formatting for-
mat, i.e. that which will be used to format the current (and subsequent) lines of char-
acters that the user enters. If there is text selected ParaFormat specifies the paragraph
formatting of the selected block of text. If the format is not strictly homogeneous,
⎕WG will report the format of the first paragraph in the selected block

(⎕WS 'ParaFormat' ...) will set the format of the currently selected block of
text. To set the format of an arbitrary block of text you must select it first using (⎕WS
'SelText' ...).

Password Property
Applies To: ButtonEdit, Edit, Spinner

Description

This property specifies the character that is echoed when a user enters data into a sin-
gle-line Edit object (Style'Single'). It does not apply to a multi-line object
(Style'Multi'). If Password is empty (the default) the character echoed is the same
as the character the user entered. If Password is set to (say) the asterisk character (*),
the object will display asterisks as the user types into it.

PathWordBreak Property
Applies To: ComboEx

Description

If set, the edit control portion of the ComboEx will use the forward slash (/), back
slash (\), and period (.) characters as word delimiters. This makes keyboard shortcuts
for word-by-word cursor movement (Ctrl + arrow keys) effective inn path names and
URLs.

Picture Property
Applies To: ActiveXControl, Button, Clipboard, CoolBand, Form, Group,

Image, MDIClient, SM, Static, StatusBar, StatusField, SubForm,
TabBar, ToolBar

Description

The Picture property specifies a bitmap, icon, or other image for an object.

Chapter 2: A-Z Reference 410

For Button, Form, Group, MDIClient, Static, StatusBar, StatusField, SubForm, SM,
TabBar or ToolBar, this property specifies the name of, or ref to, a Bitmap, Icon, or
Metafile which is drawn as a background on the object. Other controls and graphical
objects are drawn on top of this background.

When it refers to a Metafile, the Picture property specifies the name of, or ref to, the
Metafile to be drawn in the object. When it refers to a Bitmap or Icon, the value of
the Picture property is a 2-element vector whose elements specify the name of, or ref
to, the Bitmap, or Icon, and the manner in which it is displayed. This is specified as
an integer as follows:

0 The Bitmap or Icon is drawn in the top left corner of the object.

1 The Bitmap or Icon is tiled (replicated) to fill the object.

2 The Bitmap is scaled (up or down) to fit exactly in the object. This setting
does not apply to an Icon whose size is fixed.

3

The Bitmap or Icon is drawn in the centre of the object. This is the default.
Note that the centre of the Bitmap is positioned over the centre of the
object, so that you see the middle portion of a Bitmap that is larger than
the object in which it is displayed.

For example, the following statements produce a Form filled with the CARS bitmap.

'CARS' ⎕WC 'Bitmap' 'C:\WINDOWS\CARS'
'f1' ⎕WC 'Form' ('Picture' 'CARS' 1)

An easy way to provide a customised pushbutton is to create a Button whose Picture
property specifies the name of, or ref to, a Bitmap or Icon, using drawmode 3 (the
default). This causes the corresponding bitmap or icon to be drawn in the centre of
the Button. So long as the Button is larger than the bitmap or icon, its borders (which
give it its 3-dimensional appearance and "pushbutton" behaviour) will be unaffected.
Note that if Picture is set on a Button whose Style is 'Radio' or 'Check', the But-
ton assumes pushbutton appearance, although its radio/check behaviour is preserved.

For an Image object, the Picture property specifies the name of, or ref to, a Bitmap,
Icon orMetafile object to be drawn, or a vector of names or refs. The Image is a graph-
ical object and is drawn on top of the background. It does not support the drawmode
options provided by the objects in which Picture specifies the background.

For the Clipboard object, Picture is a "set-only" property that allows you to place a
specified Bitmap object into the Windows clipboard. To place a Metafile object into
the clipboard, use its Metafile property.

Chapter 2: A-Z Reference 411

PName Property
Applies To: Font, Printer

Description

This property is a character vector that specifies the face name for a Font object, or
the printing device associated with a Printer. It is case-independent.

For a Printer, PName contains the description of the printer followed by a comma (,)
and then the device to which it is attached.

Example:
'PR1' ⎕WC 'Printer'
'PR1' ⎕WG 'PName'

HP Universal Printing PS,hp4200

Points Property
Applies To: Circle, Ellipse, Image, Marker, Poly, Rect, Text

Description

This property specifies the co-ordinates for a graphics object. It may define a single
set of co-ordinates, or be a nested vector containing several sets of co-ordinates.

Each set of co-ordinates may be:

l a 2-column numeric matrix containing y-values in column 1 and x-values in
column 2. or

l a 2-element numeric vector whose first element specifies y-values and
whose second element specifies x-values. The two elements must be of
equal length unless one or both is a scalar in which case scalar extension
applies.

For further details, see the specifications for the relevant objects.

Chapter 2: A-Z Reference 412

Poly Object
Purpose: A graphical object used to draw lines, polygons, and filled areas.

Parents ActiveXControl, Animation, Bitmap, Button, ButtonEdit, Combo,
ComboEx, Edit, Form, Grid, Group, Label, List, ListView,
MDIClient, Metafile, Printer, ProgressBar, PropertyPage,
PropertySheet, RichEdit, Scroll, Spinner, Static, StatusBar,
SubForm, TabBar, TipField, ToolBar, TrackBar, TreeView,
UpDown

Children Timer

Properties Type, Points, FCol, BCol, LStyle, LWidth, FStyle, FillCol, Coord,
Visible, Event, Dragable, OnTop, CursorObj, AutoConf, Data,
Accelerator, KeepOnClose, DrawMode, MethodList, ChildList,
EventList, PropList

Methods Detach

Events Close, Create, DragDrop, MouseDown, MouseUp, MouseMove,
MouseDblClick, Help, Select

Description

The Points property specifies one or more sets of co-ordinates through which one or
more lines are drawn. The resulting polygon(s) may also be filled.

LStyle and LWidth define the style and width of the lines. FCol and BCol determine
the colour of the lines.

FStyle specifies whether or not the polygon(s) are filled, and if so, how. For a solid
fill (FStyle 0), FillCol defines the fill colour used. For a pattern fill (FStyle 1-6) Fill-
Col defines the colour of the hatch lines and BCol the colour of the areas between
them.

Note that if you specify filling, you do not have to define a closed polygon. The first
and last points will automatically be joined for you if necessary.

The value of Dragable determines whether or not the object can be dragged. The
value of AutoConf determines whether or not the Poly object is resized when its par-
ent is resized.

The structure of the property values is best considered separately for single and mul-
tiple polylines or polygons.

Chapter 2: A-Z Reference 413

Single Polyline or Polygon
For a single polyline or polygon, Points is either a 2-column matrix of (y,x) co-ordi-
nates, or a 2-element vector of y and x co-ordinates respectively.

LStyle and LWidth are both simple scalar numbers.

FStyle is either a single number specifying a standard fill pattern, or the name of a Bit-
map object which is to be used as a "brush" to fill the polygon.

FCol, BCol and FillCol are each either single numbers representing standard colours,
or 3-element vectors which specify colours explicitly in terms of their RGB values.

First make a Form :

'F' ⎕WC 'Form'

Draw a single line from (y=20, x=10) to (y=30, x=50)

'F.L1' ⎕WC 'Poly' ((20 30)(10 50))

or

L ← 2 2⍴20 10 30 50
'F.L1' ⎕WC 'Poly' L

Draw a horizontal line from (y=20, x=10) to (y=20, x=50). Note scalar extension of
y-coordinate.

'F.L1' ⎕WC 'Poly' (20(10 50))

Draw an empty box in green :

Y ← 10 10 50 50 10
X ← 10 50 50 10 10
'F.L1' ⎕WC 'Poly' (Y X) (0 255 0)

Ditto, using a green/blue dashed line (LStyle 1) :

'F.L1' ⎕WC 'Poly' (Y X) (0 255 0)(0 0 255) 1

Draw a red filled rectangle with a black border 5 pixels wide :

'F.L1' ⎕WC 'Poly' (Y X) (0 0 0) ('LWidth' 5)
('FStyle' 0)('FillCol' 255 0 0)

Chapter 2: A-Z Reference 414

Multiple Polylines/Polygons
To draw a set of polylines or polygons with a single name, Points is a nested vector
whose items are themselves 2-column matrices or 2-element nested vectors.

LStyle and LWidth may each be simple scalar values (applying to all the polylines)
or simple vectors whose elements refer to each of the corresponding polylines in turn.

FStyle may be a simple scalar numeric or a simple character vector (Bitmap name)
applying to all polylines, or a vector whose elements refer to each of the cor-
responding polylines in turn.

Similarly, FCol, BCol and FillCol may each be single numbers or a single (enclosed)
3-element vector applying to all the polylines. Alternatively, these properties may
contain vectors whose elements refer to each of the polylines in turn. If so, their ele-
ments may be single numbers or nested RGB triplets, or a combination of the two.

First make a Form :

'F' ⎕WC 'Form'

Draw two concentric triangles :

BY ← 10 10 50 10
BX ← 15 65 40 15
RY ← 15 15 40 15
RX ← 25 55 40 25
'F.L1' ⎕WC 'Poly' ((BY BX)(RY RX))

Or, using matrices :

BT ← BY,[1.5]BX
RT ← RY,[1.5]RX
'F.L1' ⎕WC 'Poly' (BT RT)

Ditto, but draw the first blue, the second red :

'F.L1' ⎕WC 'Poly' (BT RT) ((0 0 255)(255 0 0))

Ditto, but make the lines 3 pixels wide :

'F.L1' ⎕WC 'Poly' (BT RT) ((0 0 255)(255 0 0))
('LWidth' 3)

Ditto, but make the line widths 3 and 6 pixels respectively :

'F.L1' ⎕WC 'Poly' (BT RT) ((0 0 255)(255 0 0))
('LWidth' 3 6)

Draw the first hollow, but fill the second in green :

'F.L1' ⎕WC 'Poly' (BT RT) ('FStyle' ¯1 0)('FillCol'
(⊂0 255 0))

Chapter 2: A-Z Reference 415

Popup Property
Applies To: SysTrayItem, ToolButton

Description

The Popup property specifies the name of, or ref to, a (popup)Menu object that is
associated with a SysTrayItem or ToolButton.

Note that Popup is ignored unless Style is set to 'DropDown'.

Posn Property
Applies To: ActiveXControl, Animation, Button, ButtonEdit, Calendar,

ColorButton, Combo, ComboEx, CoolBand, CoolBar,
DateTimePicker, Edit, Form, Grid, Group, Label, List, ListView,
Locator, MDIClient, Menu, MenuItem, ProgressBar, PropertyPage,
PropertySheet, RichEdit, Root, Scroll, Separator, SM, Spinner,
Splitter, Static, StatusBar, StatusField, SubForm, TabBar, TabBtn,
TabButton, TabControl, ToolBar, ToolButton, ToolControl,
TrackBar, TreeView, UpDown

Description

With the exception ofMenu, MenuItem and Separator objects, Posn is a 2-element
numeric vector specifying the y-position and x-position respectively of the top-left
corner of the object relative to its parent. For a Form, Posn specifies its position on
the screen. The units are defined by the Coord property.

When specifying Posn for ⎕WC, you can allow the y-position or x-position to assume
a default value by giving the corresponding element a value of ⍬.

Using ⎕WS, if you want to set the y-position, but not the x-position, or vice-versa,
you should specify ⍬ for the item you don't want to change.

ForMenu, MenuItem and Separator objects, Posn is a single integer that specifies the
position at which the object is to be inserted in its parent. For example, to add a new
MenuItem between the third and fourth items in an existing Menu, you would spec-
ify its Posn as 4. For these objects, the value of Posn returned by ⎕WG is the current
index of the object within its parent.

Chapter 2: A-Z Reference 416

PreCreate Event 534
Applies To: ActiveXControl

Description

If enabled, this event is reported when an instance of an ActiveXControl is created.
The PreCreate event is generated at the point the instance is made.

An ActiveXControl also generates a Create event, which occurs after the PreCreate
event at the point when the host application requires the instance to appear visually.

Note that at the time that PreCreate is generated, the ActiveXControl does not have a
window.

This event is reported for information alone. You may not disable or nullify the event
by setting the action code for the event to ¯1 or by returning 0 from a callback func-
tion.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 4-element vector as follows :

[1] Object ref or character vector

[2] Event 'PreCreate' or 534

Print Method 100
Applies To: Printer

Description

This method causes any spooled output to be printed.

The Print method is niladic.

If you attach a callback function to this event and have it return a value of 0, the print-
out will not be spooled.

Chapter 2: A-Z Reference 417

Printer Object
Purpose: To provide printer output.

Parents ActiveXControl, CoolBand, Form, OLEServer, PropertyPage,
PropertySheet, Root, TCPSocket

Children Bitmap, Circle, Ellipse, Font, Icon, Image, Marker, Metafile, Poly,
Rect, Text, Timer

Properties Type, PName, DevCaps, Coord, Event, FontObj, FontList, YRange,
XRange, Data, TextSize, EdgeStyle, Handle, Orientation, Copies,
PrintRange, Collate, PaperSize, PaperSizes, PaperSource,
PaperSources, ColorMode, Resolution, Resolutions, Duplex,
Translate, Accelerator, KeepOnClose, MethodList, ChildList,
EventList, PropList

Methods Detach, Print, Setup, NewPage, Abort, RTFPrintSetup,
GetTextSize

Events Close, Create, Select

Description

The PName property is a character vector which specifies the name of an installed
printer and the device to which it is attached. The name and device are separated by a
comma (,). All valid values of PName can be obtained from the PrintList property of
the Root object.

If not specified, the default value of PName is (⊃'.' ⎕WG 'PrintList').

The DevCaps property reports the size of the printable area of the page in pixels
(dots) and in millimetres. It also reports the number of colours available. This is 2 on
a monochrome printer (black and white), although grey scales may be available.

The FontList property provides a list of fonts that are applicable and includes True-
Type and printer fonts. This list is typically different from that obtained from the Font-
List property on the Root object which lists those fonts that apply to the screen.

The Orientation property specifies the orientation of the page and may be either
'Portrait' or 'Landscape'.

The graphics objects listed above may be printed in much the same way as they may
be displayed on a Form or Static. The differences are :

Once an object has been created, it will be printed, even if its name is subsequently
expunged.

Chapter 2: A-Z Reference 418

An object does not replace an existing one which has the same name.

The act of changing one or more properties of a named object causes the object to be
printed a second time. For example, changing the Posn of an object will print it again
at a different place.

In general it is recommended that you use unnamed objects for printing.

The Printer object five methods :

Name Event Description

Print 100 Sends output to print spooler

Setup 101 Displays Printer Set-up dialog box

NewPage 102 Throws a new page

Abort 103 Aborts the print job

RTFPrintSetup 460 Displays Printer Set-up dialog box

Examples:
Start a print job on the default printer

'PR1' ⎕WC 'Printer'

Write a centred heading at the top of the page using a proportional font

'PR1.' ⎕WC 'Text' 'Report Title' (0 50)('HAlign' 1)
('FontObj' 'Roman' 64)

Draw a line across the page, 2 pixels wide

'PR1.' ⎕WC 'Poly' (2(0 100)) ('LWidth' 2)

Print a character matrix. Note that a fixed width font is used.

REPORT ← 'I6' ⎕FMT ?20 6⍴1000
'PR1.' ⎕WC 'Text' REPORT (10 0)('FontObj'

'DyalogAPL')

Throw a new page

PR1.NewPage

Spool output

⎕EX 'PR1'

Chapter 2: A-Z Reference 419

PrintList Property
Applies To: Root

Description

This property provides a list of the printers that are installed on your computer sys-
tem, i.e. those listed when you select "printers" from the MS-Windows Control Panel.
It is a "read-only" property of the Root object '.'.

PrintList is a vector of character vectors. Each item in PrintList contains the name of
an installed printer followed by a comma (,) and then the name of the device to which
it is attached. The first item in PrintList is the default system printer.

Example:
⍴'.'⎕WG'PrintList'

6
]display ⊃'.'⎕WG'PrintList'

┌→─────────────────────┐
│KODAK ESP-3 AiO,USB001│
└──────────────────────┘

↑'.'⎕WG'PrintList'
KODAK ESP-3 AiO,USB001
Send To OneNote 2007,Send To Microsoft OneNote Port:
Microsoft XPS Document Writer,XPSPort:
Microsoft Office Document Image Writer,Microsoft Document
Imaging Writer Port:
Fax,SHRFAX:
Auto Canon MP600 Printer on DIMENSION5150,
\\DIMENSION5150\Canon

Chapter 2: A-Z Reference 420

PrintRange Property
Applies To: Printer

Description

The PrintRange property specifies the range of pages to be printed.

PrintRange may be an empty character vector (the default), or 'All', either of which
will cause all pages to be printed.

Alternatively, PrintRange may be a 3 or 4-element nested array whose items are:

[1] 'Pages'

[2] Start page (integer)

[3] End page (integer)

[4] Maximum number of pages (integer)

In this case, printing starts at the page specified to be the Start page, and ends at the
page specified by End page or after the Maximum number of pages has been reached,
whichever is sooner.

Chapter 2: A-Z Reference 421

ProgressBar Object
Purpose: The ProgressBar object is used to indicate the progress of a lengthy

operation.

Parents ActiveXControl, CoolBand, Form, Group, PropertyPage, StatusBar,
SubForm, ToolBar, ToolControl

Children Bitmap, Circle, Cursor, Ellipse, Font, Icon, Marker, Poly, Rect,
Text, Timer

Properties Type, Posn, Size, Style, Coord, Active, Visible, Event, Thumb,
Step, Wrap, Limits, Sizeable, Dragable, BCol, CursorObj,
AutoConf, Data, Attach, EdgeStyle, Handle, Hint, HintObj, Tip,
TipObj, Translate, Accelerator, AcceptFiles, KeepOnClose,
ProgressStyle, Redraw, TabIndex, Interval, MethodList, ChildList,
EventList, PropList

Methods Detach, GetTextSize, Animate, GetFocus, ShowSIP, ProgressStep

Events Close, Create, DragDrop, Configure, ContextMenu, DropFiles,
DropObjects, Expose, Help, KeyPress, GotFocus, LostFocus,
MouseDown, MouseUp, MouseMove, MouseDblClick,
MouseEnter, MouseLeave, MouseWheel, Select

Description

The ProgressBar object is a window that an application can use to indicate the prog-
ress of a lengthy operation. The appearance of the bar in the ProgressBar is deter-
mined by the ProgressStyle property.

If ProgressStyle is Normal or Smooth, the size of the bar, intended to indicate the
amount of progress, is determined using the Thumb property in relation to its Limits
property, and/or using the ProgressStep method. This can be updated as appropriate
in the application logic or by using a Timer.

The range of a ProgressBar is specified by the Limits property. This is a 2-element
integer vector defining its minimum and maximum values. The position of the filled
rectangle is specified by the Thumb property. You can update the ProgressBar by
using ⎕WS to set the value of the Thumb directly, or by using the ProgressStep
method. The latter causes the Thumb to be updated by the value of the Step property.

Chapter 2: A-Z Reference 422

If you attempt to set the Thumb to a value greater than its maximum value (using
either method) the behaviour depends upon the value of the Wrap property which is
boolean and has a default value of 1. If Wrap is 1, the value obtained when you set
the Thumb property is given by the expression:

LIMITS[1]+(1+LIMITS[2]-LIMITS[1])|THUMB-LIMITS[1]

where THUMB is the value to which you set the Thumb property and LIMITS is the
value of the Limits property. This causes the highlit rectangle to begin filling again
from the left.

If ProgressStyle is Marquee, the size of the bar is fixed and its position changes with
time according to the value of the Interval property. The values of Thumb, Limits,
Wrap and Step are irrelevant.

ProgressStep Method 250
Applies To: ProgressBar

Description

This method is used to increment the thumb in a ProgressBar object.

The ProgressStep method is niladic.

The ProgressStep method causes the ProgressBar to attempt to increment its thumb by
the value of its Step property, taking into account the settings of its Limits and Wrap
properties.

If the values of the Thumb, Step and Limits properties are THUMB, STEP and
LIMITS respectively, the new value of Thumb (and the corresponding position of
the highlit bar) is:

if Wrap is 0:

LIMITS[2]⌊THUMB+STEP

if Wrap is 1:

LIMITS[1]+(1+LIMITS[2]-LIMITS[1])|THUMB+STEP-LIMITS[1]

Chapter 2: A-Z Reference 423

ProgressStyle Property
Applies To: ProgressBar

Description

The ProgressStyle property specifies the appearance of a ProgressBar control.

ProgressStyle is a character vector that may be 'Normal', 'Smooth' or
'Marquee'. Its value is effective only when the object is created with ⎕WC. Chang-
ing ProgressStyle with ⎕WS has no effect on the appearance or behaviour of the Prog-
ressBar.

If ProgressStyle is 'Normal', the highlight in the centre of the ProgressBar is dis-
played as a broken bar. This is the default.

If ProgressStyle is 'Smooth', the highlight in the centre of the ProgressBar is dis-
played as a solid block of colour. This style only applies ifWindows Classic Theme
is in use. If not, it will be as if 'Normal' were specified.

If ProgressStyle is 'Marquee', the highlight in the centre of the ProgressBar is dis-
played as a broken bar that moves continuously from left to right. The speed is con-
trolled by the Interval Property which determines the frequency in milliseconds with
which the highlight is redrawn, each time further along the ProgressBar. The special
value of ¯1 causes the animation to stop.

Note that this feature only apples if Native Look and Feel (see page 36) is enabled. If
not, 'Marquee' will produce the same behaviour as 'Normal'.

The pictures below illustrate the appearance of the different values of ProgressStyle.

ProgressStyle Normal (the default)

Chapter 2: A-Z Reference 424

ProgressStyle Smooth (Windows Classic Theme only)

ProgressStyle Marquee (requires Native Look and Feel)

Chapter 2: A-Z Reference 425

PropertyPage Object
Purpose: The PropertyPage object represents a single page in a

PropertySheet.

Parents PropertySheet

Children Animation, Bitmap, BrowseBox, Button, ButtonEdit, Calendar,
Circle, Clipboard, ColorButton, Combo, ComboEx, Cursor,
DateTimePicker, Edit, Ellipse, FileBox, Font, Grid, Group, Icon,
Image, ImageList, Label, List, ListView, Locator, Marker, Metafile,
MsgBox, OCXClass, Poly, Printer, ProgressBar, Rect, RichEdit,
Scroll, SM, Spinner, Splitter, Static, SubForm, TCPSocket, Text,
Timer, TipField, TrackBar, TreeView, UpDown

Properties Type, Caption, Posn, Size, Coord, Active, Event, HasHelp,
FontObj, Data, EdgeStyle, Hint, HintObj, Tip, TipObj, Changed,
Translate, AcceptFiles, KeepOnClose, MethodList, ChildList,
EventList, PropList

Methods Detach, ChooseFont, GetTextSize, Animate, GetFocus, ShowSIP

Events Close, Create, DragDrop, Configure, ContextMenu, DropFiles,
DropObjects, Expose, Help, KeyPress, GotFocus, LostFocus,
MouseDown, MouseUp, MouseMove, MouseDblClick,
MouseEnter, MouseLeave, MouseWheel, FontOK, FontCancel,
PageApply, PageCancel, PageHelp, PageBack, PageNext,
PageFinish, PageChanged, PageActivate, PageDeactivate,
SetWizard

Description

The PropertyPage object represents a single page within a PropertySheet.

The Posn and Size properties are read-only properties determined by the parent Prop-
ertySheet and may not be changed using ⎕WC or ⎕WS.

Chapter 2: A-Z Reference 426

The HasHelp property is either 1 (the default) or 0. If the parent PropertySheet has a
"Help" button (determined by its own HasHelp property) this property determines
whether or not the Help button is active when the PropertyPage is the current page. If
the HasHelp property of a PropertyPage is 0, the Help button on the parent Prop-
ertySheet will be temporarily disabled when that PropertyPage is displayed.

The PropertyPage object generates a PageActivate event when it becomes the current
page and a PageDeActivate event when another page is selected. These events may
not be disabled by a callback function.

If the user presses the Cancel button, the current PropertyPage generates a Page-
Cancel event. This is followed by a Close event which is reported by the parent Prop-
ertySheet.

Other properties and behaviour depend upon the Style of the parent PropertySheet
which may be 'Standard' or 'Wizard'

Standard Behaviour

In a Standard PropertySheet, the Caption property of each PropertyPage specifies the
text that is written in its tab.

PropertyPage objects owned by a Standard PropertySheet generate PageCancel,
PageApply and PageHelp events. These events are all caused by the user pressing the
corresponding button in the parent PropertySheet.

Chapter 2: A-Z Reference 427

Conventionally, the Apply button is initially inactive. When the user changes an
item on any of the PropertyPages, the Apply button immediately becomes active.
When the user clicks the Apply button, the application responds (normally by chang-
ing the appropriate properties) and then the Apply button becomes inactive once
again. This process is controlled as follows.

The Changed property is a boolean value that determines whether or not a Prop-
ertyPage is marked as having been in any way altered. The Apply button is active if
the value of the Changed property for any of the PropertyPages is 1, and is inactive
otherwise

Initially, the value of the Changed property for all of the PropertyPages is 0 and the
Apply button is therefore inactive. If the user alters a control on a PropertyPage, by,
for example typing into an Edit object or changing the State of a Radio Button, the
PropertyPage immediately generates a PageChanged event with the parameter 1. The
default processing for this event is to set the Changed property of the PropertySheet
(to 1). This in turn activates the "Apply" button. If you return 0 from a callback on the
PageChanged event, the Changed property remains 0 and the Apply button remains
inactive.

When the user clicks the Apply button, each of the PropertyPages whose Changed
flag is currently set to 1 generates a PageApply event. The default processing for this
event is to generate a PageChanged event with the parameter 0. This is turn resets the
Changed property of the PropertyPage to 0. Once all of the Changed flags have been
reset, the Apply button becomes inactive. If you return 0 from a callback on any of
the PageChanged events, the Changed property for the corresponding PropertyPage
remains 1 and the Apply button remains active.

You may control the value of the Changed property using ⎕WS or by calling Page-
Changed as a method. In all cases, the Apply button is active if the value of Changed
on any PropertyPage is 1, and inactive otherwise.

Chapter 2: A-Z Reference 428

Wizard Behaviour

If the PropertyPage is owned by aWizardPropertySheet, its Caption property spec-
ifies the text that appears in the title bar of the PropertySheet window when the Prop-
ertyPage is the current page. Note that a Wizard PropertySheet ignores its own
Caption property.

There are effectively 3 page changing buttons on a Wizard PropertySheet, named
Back, Next and Finish. The Next and Finish buttons actually occupy the same posi-
tion and are mutually exclusive. The captions on the buttons are language-depend-
ent.

Conventionally, the buttons change according to which of the PropertyPages is cur-
rently displayed. If the first one is displayed, the Next button is active but the Back
button is inactive. When a middle page is displayed, both the Next and Back buttons
are active. When the last page is displayed, the caption on the Next button changes
to Finish. However, in some applications, the Back button may be disabled to pre-
vent the user returning to a previous page.

Chapter 2: A-Z Reference 429

When the user clicks the Back or Next button, the PropertyPage generates a Page-
Back or PageNext event followed by a PageDeactivate event. The new PropertyPage
then generates a PageActivate event. These are followed by a SetWizard event which
is generated by the parent PropertySheet and actually controls the state of the but-
tons. When the user clicks the Finish button, the PropertyPage generates a PageFinish
event alone. All of these events reported by the PropertyPage are reported for infor-
mation only. Returning 0 from a callback function has no effect. You may however
control the buttons using the SetWizard event,

PropertySheet Object
Purpose: The PropertySheet object represents a standard multi-page dialog

box.

Parents ActiveXControl, Form, OLEServer, Root, SubForm, TCPSocket

Children Bitmap, BrowseBox, Circle, Clipboard, Cursor, Ellipse, FileBox,
Font, Icon, Locator, Marker, Metafile, MsgBox, Poly, Printer,
PropertyPage, Rect, Text, Timer, TipField

Properties Type, Caption, Posn, Size, Style, Coord, Active, Visible, Event,
HasApply, HasHelp, PageActive, PageActiveObject, HelpButton,
FontObj, OnTop, Data, EdgeStyle, Handle, Hint, HintObj, Tip,
TipObj, Translate, KeepOnClose, MethodList, ChildList, EventList,
PropList

Methods Detach, ChooseFont, SetFinishText, CancelToClose, GetFocus,
Wait

Events Close, Create, FontOK, FontCancel

Description

There are two different kinds of PropertySheet which you select using the Style prop-
erty. This may only be set when the PropertySheet is created using ⎕WC and Style
may not subsequently be changed using ⎕WS.

If Style is Standard (the default), the PropertySheet displays a set of pages (each rep-
resented by a PropertyPage) as a set of tabbed forms as illustrated below. The user
selects the current page by clicking on the appropriate tab. This Style allows the user
to select any page at any time and does not oblige the user to visit any but the first
page you choose to display. This Style is useful for displaying groups of options or
settings that the user may change.

Chapter 2: A-Z Reference 430

If Style is Wizard, the PropertySheet displays its pages in succession starting with the
first. The user steps from one to another using the Next and Back buttons and may be
forced to visit all the pages in a prescribed order. This Style is useful for data entry or
for asking the user to make a series of choices.

Chapter 2: A-Z Reference 431

The Caption property specifies the text written in the window title bar, but only
applies if the Style is Standard. The title bar text of a Wizard PropertySheet is spec-
ified by the Caption of the current PropertyPage.

The HasApply and HasHelp properties are boolean and specify whether or not the
PropertySheet has "Apply" and "Help" buttons respectively. These properties may
only be set when the object is created using ⎕WC. They both have default values of 1.

The FontObj and EdgeStyle properties have no effect on the appearance of the Prop-
ertySheet itself, but may be used to define the default appearance of its children.

PropList Property
Applies To: ActiveXContainer, ActiveXControl, Animation, Bitmap,

BrowseBox, Button, ButtonEdit, Calendar, Circle, Clipboard,
ColorButton, Combo, ComboEx, CoolBand, CoolBar, Cursor,
DateTimePicker, Edit, Ellipse, FileBox, Font, Form, Grid, Group,
Icon, Image, ImageList, Label, List, ListView, Locator, Marker,
MDIClient, Menu, MenuBar, MenuItem, Metafile, MsgBox,
OCXClass, OLEClient, OLEServer, Poly, Printer, ProgressBar,
PropertyPage, PropertySheet, Rect, RichEdit, Root, Scroll,
Separator, SM, Spinner, Splitter, Static, StatusBar, StatusField,
SubForm, SysTrayItem, TabBar, TabBtn, TabButton, TabControl,
TCPSocket, Text, Timer, TipField, ToolBar, ToolButton,
ToolControl, TrackBar, TreeView, UpDown

Description

This is a "read-only" property that supplies a list of all other properties which are
applicable to the object in question. The list is returned as a vector of character vec-
tors in the order in which the corresponding properties are expected by ⎕WC and ⎕WS.

Example:
'F' ⎕WC 'Form'
'F.MB' ⎕WC 'MenuBar'
'F.MB' ⎕WG 'PropList'

Type Visible FontObj Data EdgeStyle MDIMenu
PropList

Chapter 2: A-Z Reference 432

Protected Event 470
Applies To: RichEdit

Description

If enabled, this event is reported when the user attempts to alter protected text in a
RichEdit. See CharFormat property.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 2-element vector as follows :

[1] Object ref or character vector

[2] Event 'Protected' or 470

QueueEvents Property
Applies To: OCXClass, OLEClient

Description

The QueueEvents property specifies whether or not incoming events generated by an
COM object are queued. It is a Boolean value where the (default) value 1 specifies
that events are queued, and 0 that they are not.

If QueueEvents is 1, the result (if any) of your callback function is not passed back to
the COM object but is discarded. Thus you cannot, for example, inhibit or modify the
default processing of the event by the COM object.

If QueueEvents is 0, the following applies.

l The callback function attached to the event is executed immediately, even if
there are other APL events before it in the internal event queue. This imme-
diate execution means that your callback can fire during the execution of
any other function, including a callback function on an APL event. You
must therefore take care that the callback makes no references to objects that
may be shadowed.

l The result of your callback function is then passed back to the COM object.
In this situation, it is essential that the callback is not interrupted by other
events from the same, or another instance, of an COM object.

l To prevent APL itself from yielding to Windows, the Yield property is tem-
porarily set to 0 while the callback is run. For the same reason, the tracing
of a callback function, that is run immediately in this way, is disabled.

Chapter 2: A-Z Reference 433

However, you must yourself also ensure that your own code does not yield. This
means that you may not perform any operation in your callback that would yield to
Windows; these include:

l ⎕DL
l certain uses of ⎕NA
l external function calls to Auxiliary Processors

If your callback does yield to Windows, thereby allowing another COM object event
to arrive, this second event and any subsequent events that arrive during the
execution of the callback are queued and will be processed later. These events may
therefore not be modified by their callback functions.

Radius Property
Applies To: Circle, Rect

Description

For a Circle object, this property is a single number that specifies the radius of the cir-
cle/arc or a numeric vector that specifies the radii of a set of circles/arcs.

For a Rect object, Radius is a 2-element vector that specifies the curvature of the corn-
ers of the rectangle or set of rectangles to be drawn. The curvature is defined in terms
of the vertical and horizontal radii of an ellipse. The first element of Radius defines
the radius vertically, the second horizontally. If more than one rectangle is involved,
either or both of the elements of Radius may be vectors. The default value is (0,0)
which gives square corners.

RadiusMode Property
Applies To: Circle, Root

Description

A perfectly round circle can only be drawn if the diameter is an odd number of pixels.
The RadiusMode property specifies whether or not a circle is adjusted by a single
pixel, if necessary, so as to appear perfectly round.

If RadiusMode is 1 or ¯1, and the diameter is an even number of pixels, the circle is
actually drawn with a diameter of 1 pixel more or less than specified. If RadiusMode
is 0 (the default), no such adjustment is made.

RadiusMode may be set on the Root object to be inherited by all Circle objects.

Chapter 2: A-Z Reference 434

Range Property
Applies To: Form, Scroll, SubForm

Description

This property determines the maximum value of the thumb in a scrollbar (the mini-
mum value is always 1). This may be any positive integer value that is greater than 1.

For a Scroll object Range is a single number. For a Form or SubForm object, Range is
a 2-element vector which specifies the maxima for the Form's vertical and horizontal
scrollbars respectively.

ReadOnly Property
Applies To: Button, ButtonEdit, Edit, Spinner

Description

This property specifies whether or not the user may alter the text in an object. The
default value of ReadOnly is 0 which allows the user to alter text.

If you set ReadOnly to 1, a cursor is displayed in the object, the user may navigate
around the text in the usual manner with the mouse and/or the keyboard and select
text and copy it to the clipboard. However, all input that would otherwise change the
data is ignored.

For a Button object with Style'Radio' or 'Check', setting ReadOnly to 1 pre-
vents the user from changing the state of the Button, although mouse and other
events will still be reported.

RealSize Property
Applies To: Metafile

Description

There are several distinct types ofWindows metafiles. A placeablemetafile is one
that carries with it its suggested size. Certain programs (such as Word forWindows)
only support placeable metafiles.

The RealSize property specifies the suggested size of a Metafile in units of 0.01mm.
Thus to make a placeable Metafile with a suggested size of 20 x 10 cm, you would
set RealSize to (20000 10000).

Chapter 2: A-Z Reference 435

The RealSize property is not used or required by Dyalog APL/W and is provided
only to enable you to make and save a new metafile that is placeable. If you create a
Metafile object from a file, the value of RealSize will be obtained from the value
recorded in the file (if it is placeable). Otherwise, RealSize will be (0 0). If so, you
must set RealSize to make it placeable. Each element of RealSize must be an integer
in the range 0-144745.

Rect Object
Purpose: A graphical object used to draw boxes.

Parents ActiveXControl, Animation, Bitmap, Button, ButtonEdit, Combo,
ComboEx, Edit, Form, Grid, Group, Label, List, ListView,
MDIClient, Metafile, Printer, ProgressBar, PropertyPage,
PropertySheet, RichEdit, Scroll, Spinner, Static, StatusBar,
SubForm, TabBar, TipField, ToolBar, TrackBar, TreeView,
UpDown

Children Timer

Properties Type, Points, Size, Radius, FCol, BCol, LStyle, LWidth, FStyle,
FillCol, Coord, Visible, Event, Dragable, OnTop, CursorObj,
AutoConf, Data, EdgeStyle, Accelerator, KeepOnClose,
DrawMode, MethodList, ChildList, EventList, PropList

Methods Detach

Events Close, Create, DragDrop, MouseDown, MouseUp, MouseMove,
MouseDblClick, Help, Select

Description

The Points property specifies one or more sets of co-ordinates which define the posi-
tion(s) of one or more rectangles. The position of a rectangle is defined to be the posi-
tion of the corner that is nearest to the origin of its parent. The default is therefore its
top-left corner. The Size property specifies the height and width of each rectangle,
measuring away from the origin.

The Radius property specifies the curvature of the corners of the rectangle.

LStyle and LWidth define the style and width of the lines used to draw the bound-
aries of the rectangle(s). FCol and BCol determine the colour of the lines.

FStyle specifies whether or not the rectangle(s) are filled, and if so, how. For a solid
fill (FStyle 0), FillCol defines the fill colour used. For a pattern fill (FStyle 1-6) Fill-
Col defines the colour of the hatch lines and BCol the colour of the spaces between
them.

Chapter 2: A-Z Reference 436

The EdgeStyle property may specify a 3-dimensional effect. If so, the boundary line
around the rectangle is replaced by a border designed to achieve the desired effect.

The value of Dragable determines whether or not the object can be dragged. The
value of AutoConf determines whether or not the Rect object is resized when its par-
ent is resized.

The structure of the property values is best considered separately for single and mul-
tiple rectangles :

Single Rectangle
For a single rectangle, Points is either a 2-column matrix of (y,x) co-ordinates, or a 2-
element vector of y and x co-ordinates respectively.

Size is a simple 2-element vector whose elements specify the height and width of the
rectangle respectively.

Radius is a 2-element vector which specifies the major (y-axis) and minor (x-axis)
radii of an ellipse used to draw the corners of the rectangle. Its default value is (0 0)
which yields right-angled corners.

LStyle and LWidth are both simple scalar numbers.

FStyle is either a single number specifying a standard fill pattern, or the name of a Bit-
map object which is to be used as a "brush" to fill the rectangle.

FCol, BCol and FillCol are each either single numbers representing standard colours,
or 3-element vectors which specify colours explicitly in terms of their RGB values.

First make a Form :

'F' ⎕WC 'Form'

Draw a single rectangle at (y=10, x=5) with height=30, width=50 :

'F.R1' ⎕WC 'Rect' (10 5)(30 50)

Ditto with rounded corners (radii 10) :

'F.R1' ⎕WC 'Rect' (10 5)(30 50)(10 10)

Ditto, but use a red line :

'F.R1' ⎕WC 'Rect' (10 5)(30 50)(10 10)(255 0 0)

Ditto, but fill in green

'F.R1' ⎕WC 'Rect' (10 5)(30 50)(10 10)(255 0 0)
('FStyle' 0)(0 255 0)

Chapter 2: A-Z Reference 437

Multiple Rectangles
To draw a set of rectangles with a single name, Points may be a simple 2-element vec-
tor (specifying the location of all the rectangles), or a 2-column matrix whose first
column specifies their y-coordinates and whose second column specifies their x-coor-
dinates, or a 2-element nested vector whose first element specifies their y-coordinate
(s) and whose second element specifies their x-coordinate(s).

Likewise, Size may be a simple 2-element vector (applying to all the rectangles), or a
2-column matrix whose first column specifies their heights and whose second col-
umn specifies their widths, or a 2-element nested vector whose first element specifies
their height(s) and whose second element specifies their width(s).

Radius may be a simple 2-element vector (applying to all the rectangles), or a 2-col-
umn matrix whose first column specifies major radii and whose second column spec-
ifies minor radii, or a 2-element nested vector whose first element specifies major
radii and whose second element specifies minor radii.

LStyle and LWidth may each be simple scalar values (applying to all the rectangles)
or simple vectors whose elements refer to each of the corresponding rectangles in
turn.

FStyle may be a simple scalar numeric or a simple character vector (Bitmap name)
applying to all rectangles, or a vector whose elements refer to each of the cor-
responding rectangles in turn.

Similarly, FCol, BCol and FillCol may each be single numbers or a single (enclosed)
3-element vector applying to all the rectangles. Alternatively, these properties may
contain vectors whose elements refer to each of the rectangles in turn. If so, their ele-
ments may be single numbers or nested RGB triplets, or a combination of the two.

First make a Form :

'F' ⎕WC 'Form'

Draw two rectangles at (y=5, x=10) and (y=5, x=60) each of (height=40, width=10)

'F.R1' ⎕WC 'Rect' ((5 5)(10 60)) (40 10)

Ditto, using scalar extension for (y=5) :

'F.R1' ⎕WC 'Rect' (5(10 60)) (40 10)

Ditto, but draw the first with (height=40, width=30) and the second with (height=20,
width=10) :

'F.R1' ⎕WC 'Rect' (5(10 60)) ((40 20)(30 10))

Chapter 2: A-Z Reference 438

Draw two rectangles at (y=5, x=10) and (y=5, x=60) each of (height=40, width=10)
and with rounded corners of radii (10,10) :

'F.R1' ⎕WC 'Rect' (5(10 60)) (40 10) (10 10)

Ditto, using a green line for both :

'F.R1' ⎕WC 'Rect' (5(10 60)) (40 10) (10 10)(⊂0 255
0)

Ditto, but using red and blue lines respectively :

'F.R1' ⎕WC 'Rect' (5(10 60)) (40 10) (10 10)((255 0
0)(0 0 255))

Redraw Property
Applies To: ActiveXControl, Button, ButtonEdit, Calendar, ColorButton,

Combo, ComboEx, CoolBar, DateTimePicker, Edit, Form, Grid,
Group, Label, List, ListView, MDIClient, ProgressBar, RichEdit,
Scroll, SM, Spinner, Static, StatusBar, SubForm, TabBar, ToolBar,
ToolControl, TrackBar, TreeView, UpDown

Description

The Redraw property specifies whether or not APL automatically redraws an object
when it is exposed or when any of its properties change in a way that would affect its
appearance.

The value reported by the Redraw property is a Boolean value; 1 means that APL
automatically redraws the object when necessary (the default); 0 means that APL
does not redraw the object.

Setting Redraw to 0 or 1 affects only whether or not APL will redraw the object from
then on.

In addition to the values 0 and 1, you may set Redraw to 2. This has the same effect
as setting it to 1, but object is also redrawn immediately.

Chapter 2: A-Z Reference 439

RemoteAddr Property
Applies To: TCPSocket

Description

The RemoteAddr property is a character vector that specifies the IP address of the
remote computer.

RemoteAddr may only be specified by a client TCPSocket that is intended to make a
connection with a server. Furthermore, it must be specified in the ⎕WC statement that
creates the TCPSocket object and it may not subsequently be changed using ⎕WS.

You may use either RemoteAddr or RemoteAddrName to identify the remote com-
puter. If you know its IP address, it is normally quicker to specify RemoteAddr. If you
specify both properties, the value of RemoteAddrName will be ignored.

For a server TCPSocket, RemoteAddr is determined by the IP address of the con-
necting process and is a read-only property.

RemoteAddrName Property
Applies To: TCPSocket

Description

The RemoteAddrName property is a character vector that specifies the host name of
the remote computer to which you wish to make a connection.

RemoteAddrName may only be specified by a client TCPSocket that is intended to
make a connection with a server. Furthermore, it must be specified in the ⎕WC state-
ment that creates the TCPSocket object and it may not subsequently be changed
using ⎕WS.

When the specified host name has been resolved to an IP address, the TCPSocket will
generate a TCPGotAddr event and update the value of RemoteAddr accordingly.

Note that you may use eitherRemoteAddror RemoteAddrName to identify the
remote computer. If you know its IP address, it is normally quicker to specify Remo-
teAddr. If you specify both properties, the value of RemoteAddrName will be
ignored.

For a server TCPSocket, you may not specify RemoteAddrName and ⎕WG returns an
empty character vector.

Chapter 2: A-Z Reference 440

RemotePort Property
Applies To: TCPSocket

Description

The RemotePort property is a scalar integer in the range 1-65536 that identifies the
port number associated with a service on a remote computer.

RemotePort may only be specified by a client TCPSocket that is intended to make a
connection with a server. Furthermore, it must be specified in the ⎕WC statement that
creates the TCPSocket object and it may not subsequently be changed using ⎕WS.

Note that you may use either RemotePort orRemotePortName to identify the remote
service. If you know the port number, it is normally quicker to specify RemotePort.
However unless it is a well known port number, the use of a port name is generally
more flexible. If you specify both properties, the value of RemotePortName will be
ignored.

For a server TCPSocket, RemotePort is determined by the port number of the con-
necting process and is a read-only property.

RemotePortName Property
Applies To: TCPSocket

Description

The RemotePortName property is a character vector that specifies the port name of
the remote service to which you wish to make a connection.

RemotePortName may only be specified by a client TCPSocket that is intended to
make a connection with a server. Furthermore, it must be specified in the ⎕WC state-
ment that creates the TCPSocket object and it may not subsequently be changed
using ⎕WS.

When the specified port name has been resolved to a port number, the TCPSocket
will generate a TCPGotPort event and update the value of RemotePort accordingly.

Note that you may use eitherRemotePortor RemotePortName to identify the remote
service. If you know the port number, it is normally quicker to specify RemotePort.
However unless it is a well known port number, the use of a port name is generally
more flexible. If you specify both properties, the value of RemotePortName will be
ignored.

Chapter 2: A-Z Reference 441

For a server TCPSocket, you may not specify RemotePortName and ⎕WG returns an
empty character vector.

ReportBCol Property
Applies To: ListView

Description

In Report View, the ReportBCol property is either a scalar or a matrix that specifies
the background colours for each item displayed in a ListView object .

Its first column refers to the Items themselves, and subsequent columns to the ele-
ments of ReportInfo.

i.e. if non-scalar, (⍴ReportBCol)←→(0 1+⍴ReportInfo)

Each element of ReportBCol is either an integer colour value or a 3-element of RGB
colour indices.

For further information, see "BCol" on page 71.

ReportImageIndex Property
Applies To: ListView

Description

The ReportImageIndex property is an integer scalar or matrix that specifies the
images to be displayed alongside each item in a ListView object in Report View.

If it is a matrix, its first column specifies the indices of the icons to be displayed
against the Items of the ListView, overriding the icons specified by ImageIndex, and
its subsequent columns specify the indices of the icons to be displayed against the
elements of ReportInfo.

i.e. if non-scalar, (⍴ReportImageIndex)←→(0 1+⍴ReportInfo)

Each element of ReportImageIndex specifies an index into the ImageList object spec-
ified by the ImageListObj property.

Chapter 2: A-Z Reference 442

ReportInfo Property
Applies To: ListView

Description

The ReportInfo property is a matrix that is displayed alongside each item in a List-
View object when its View property is 'Report'. Each element of the matrix may
be a character vector or a number.

The information is displayed in a grid format, the first column of which contains the
item labels and their icons. Subsequent columns of the grid are defined by the cor-
responding columns of ReportInfo. The alignment of the columns is specified by the
ColTitleAlign property.

ResizeCols Property
Applies To: Grid

Description

This property determines whether or not the user may resize columns in the Grid. It is
a boolean scalar or vector with one element per column. A value of 1 indicates that
the corresponding column is resizable by the user. A value of 0 means that the cor-
responding column may not be resized by the user.

If a column is resizable, the cursor changes to a double headed arrow when the mouse
pointer is placed over the right-hand border of the column title. The user may resize
the column by dragging this border. The user may also resize a column by double-
clicking over its right-hand border. This causes the column to be resized to fit the
data and the width of the column is automatically adjusted to display the widest
value in any of its cells. Either operation generates a SetColSize event.

Note that the user may cause the column to disappear altogether by dragging it to a
zero width. Once this has been done, this column may only be restored if the column
to its left is itself not resizable.

Chapter 2: A-Z Reference 443

ResizeColTitles Property
Applies To: Grid

Description

This property determines whether or not the user may alter the height of the column
titles in the Grid. It is either 1, which indicates that the height of the column titles is
adjustable by the user, or 0 which means that it is not.

If the height of the column titles is adjustable, the cursor changes to a double headed
arrow when the mouse pointer is placed over the top border of the first row title The
user may resize the column titles by dragging this border. The user may also resize
the column titles by double-clicking over this border. This causes the column titles to
be resized to fit the data and the height of the column titles is automatically adjusted
to display the tallest heading in any of its columns. Either operation generates a
SetRowSize event. The value of the row number reported by the event is ¯1.

Note that the user may cause the column titles to disappear altogether by dragging
them to a zero height. Once this has been done, the row titles cannot be restored.

ResizeRows Property
Applies To: Grid

Description

This property determines whether or not the user may resize rows in the Grid. It is a
boolean scalar or vector with one element per column. A value of 1 indicates that the
corresponding row is resizable by the user. A value of 0 means that the corresponding
row may not be resized by the user.

If a row is resizable, the cursor changes to a double headed arrow when the mouse
pointer is placed over the lower border of the row title. The user may change the
height of the row by dragging this border up and down. The user may also resize a
row by double-clicking over its bottom border. This causes the row to be resized to
fit the data and the height of the row is automatically adjusted to display the tallest
value in any of its cells. Either operation generates a SetRowSize event.

Note that the user may cause the row to disappear altogether by dragging it to a zero
height. Once this has been done, this row may only be restored if the row above it is
itself not resizable.

Chapter 2: A-Z Reference 444

ResizeRowTitles Property
Applies To: Grid

Description

This property determines whether or not the user may alter the width of the row titles
in the Grid. It is either 1, which indicates that the width of the row titles is adjustable
by the user, or 0 which means that it is not.

If the width of the row titles is adjustable, the cursor changes to a double headed
arrow when the mouse pointer is placed over the left-hand border of the first column
title. The user may resize the row titles by dragging this border. The user may also
resize the row titles by double-clicking over this border. This causes the row titles to
be resized to fit the data and the width of the row titles is automatically adjusted to
display the longest string in any of its rows. Either operation generates a SetColSize
event. The value of the column number reported by the event is ¯1.

Note that the user may cause the row titles to disappear altogether by dragging them
to a zero width. Once this has been done, the row titles cannot be restored.

Resolution Property
Applies To: Printer

Description

The Resolution property determines the print resolution.

You may set Resolution to 'Draft', 'Low', 'Medium' or 'High'.

Alternatively, you can set Resolution to a 2-element integer vector that specifies the
desired number of dots per inch in the x (horizontal) and y (vertical) direction respec-
tively.

The initial value reported by Resolution may be reported in either form (character vec-
tor or 2-element numeric vector) according to the current printer settings.

Chapter 2: A-Z Reference 445

Resolutions Property
Applies To: Printer

Description

The Resolutions property is a read-only property that reports the available printer res-
olutions.

Resolutions is a vector of 2-element integer vectors each of which specifies the
number of dots per inch in the x (horizontal) and y (vertical) directions respectively.

Retracting Event 304
Applies To: Grid, TreeView

Description

If enabled, this event is reported by a Grid or a TreeView object just before it is about
to retract to hide the children of the current item.

In a Grid, this occurs when the user clicks the picture or tree line in the row title.

In a TreeView, this occurs when the user double-clicks the item label or clicks in the
button or on the tree line to the left of the item label, when the item is in its expanded
state.

The default processing for the event is to retract the tree at the corresponding point.

You may disable the retract operation by setting the action code for the event to ¯1.
You may also prevent the retraction from occurring by returning 0 from a callback
function. You may retract Grid a or a TreeView dynamically under program control
by calling Retracting as a method.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 3-element vector as follows :

[1] Object ref or character vector

[2] Event 'Retracting' or 304

[3] Item number Integer. The index of the item.

Chapter 2: A-Z Reference 446

RichEdit Object
Purpose: The RichEdit object is a multi-line text editor that provides a wide

range of word-processing capabilities.

Parents ActiveXControl, CoolBand, Form, Group, PropertyPage, SubForm,
ToolBar, ToolControl

Children Bitmap, Circle, Cursor, Ellipse, Font, Icon, Marker, Poly, Rect,
Text, Timer

Properties Type, Text, Posn, Size, File, Coord, Border, Active, Visible, Event,
VScroll, HScroll, SelText, Sizeable, Dragable, FontObj, FCol,
BCol, CursorObj, AutoConf, Data, Attach, EdgeStyle, Handle,
Hint, HintObj, Tip, TipObj, Changed, RTFText, Translate,
Accelerator, CharFormat, WordFormat, ParaFormat, PageWidth,
AcceptFiles, WantsReturn, KeepOnClose, Redraw, TabIndex,
MethodList, ChildList, EventList, PropList

Methods Detach, ChooseFont, GetTextSize, Animate, GetFocus, ShowSIP,
RTFPrintSetup, RTFPrint, FileRead, FileWrite

Events Close, Create, FontOK, FontCancel, DragDrop, Configure,
ContextMenu, DropFiles, DropObjects, Expose, Help, KeyPress,
GotFocus, LostFocus, MouseDown, MouseUp, MouseMove,
MouseDblClick, MouseEnter, MouseLeave, MouseWheel,
Protected, Change, Select

Description

A RichEdit object is a window in which the user can enter and edit text. The text can
be assigned character and paragraph formatting. Although the corresponding control
can include embedded OLE objects, this is not yet supported by Dyalog APL.

The RichEdit object provides a programming interface for formatting text. However,
your application must implement any user interface components necessary to make
formatting operations available to the user. For example, your program can set the
colour and font of a particular block of text, but the RichEdit itself provides no facil-
ities for the user to do this directly. It is up to you to provide these.

The File property specifies the name of a file associated with the object. Data in the
file is assumed to be in rich text format, and the default extension for the file is .RTF.
You can read the file into the object by calling FileRead and you can write the con-
tents to the file by calling FileWrite. You can also print the contents of the object by
calling RTFPrint.

Chapter 2: A-Z Reference 447

The Text property may be used to set or retrieve the text of the RichEdit, but ignores
formatting information.

The RTFText property may be used to set or retrieve the contents of the RichEdit,
including text and formatting.

The PageWidth property defines the width of the text within the object. Text entered
into the object is automatically wrapped according to PageWidth. This property also
defines the width when the text is printed.

You can set the default character format or the format of a particular block of text
using the CharFormat property. If there is no selection, setting CharFormat defines
the default character format that applies at the current insertion position and estab-
lishes the appearance of all of the text (font, colour, size etc.) that the user sub-
sequently enters here. If there is a selection, setting CharFormat sets the character
format for the selected block of text.

The WordFormat property is similar to CharFormat except that is sets the format for
the selected word(s) or, if there is no selection, for the word containing the insertion
point.

The Paraformat property defines the paragraph formatting which includes alignment,
indentation and the location of tab stops. When you set Paraformat with ⎕WS, the for-
matting is applied to the current selection. If there is no selection, it defines the
default paragraph formatting at the insertion point.

All of the dimensions used for text and paragraph formatting are specified in Twips.
You can convert from pixels to Twips and vice versa using the DevCaps property of
either Root or the Printer object as appropriate.

The behaviour of the Enter key is defined by the WantsReturn property. If Wants-
Return is 1 (the default), the Enter key inputs a new line into the RichEdit object. If
WantsReturn is 0 the Enter key is ignored by the RichEdit object and may instead
generate a Select event on a Button. In this case the user must press Ctrl+Enter to
input a new line.

The user may copy and paste information (in RTF format) between a RichEdit object
and the Windows clipboard. The Clipboard object also has an RTFText property that
supports RTF format

If the user attempts to alter text that is protected (see CharFormat) the RichEdit object
reports a Protected event.

You may print the contents of a RichEdit object using the RTFPrint method. You
may display a print set-up dialog box using the RTFPrintSetup method.

Chapter 2: A-Z Reference 448

Root Object
Purpose: This is an invisible "system" object that acts as the parent of all

other objects.

Children Bitmap, BrowseBox, Clipboard, Cursor, FileBox, Font, Form, Icon,
ImageList, Locator, Menu, Metafile, MsgBox, NetClient, NetType,
OCXClass, OLEClient, OLEServer, Printer, PropertySheet,
SysTrayItem, TCPSocket, Timer, TipField

Properties Type, Caption, Posn, Size, DevCaps, Coord, Event, FontObj,
FontList, PrintList, IconObj, CursorObj, YRange, XRange, Data,
TextSize, Yield, EdgeStyle, HintObj, TipObj, Translate,
UpperCase, APLVersion, EvaluationDays, KeepOnClose,
OLEControls, OLEServers, LastError, RadiusMode, MethodList,
ChildList, EventList, PropList

Methods ChooseFont, Flush, NameFromHandle, GreetBitmap,
GetCommandLine, GetCommandLineArgs, GetEnvironment,
ListTypeLibs, DeleteTypeLib, GetTextSize, GetFocus, ShowSIP,
IDNToDate, DateToIDN, TCPGetHostID, GetBuildID, Wait

Events FontOK, FontCancel, DDE, Idle, ExitWindows, ExitApp,
WinIniChange, SysColorChange, DisplayChange, ActivateApp

Description

There is a single Root object called '.' which is always present. It cannot be created
using ⎕WC nor can it be destroyed.

The Caption and IconObj properties of '.' are used to identify a Dyalog APL/W
application as distinct from the APL Session. The Caption property specifies the
application name that is displayed when you cycle through running applications
using Alt+Tab and by the Windows Task List. The IconObj property specifies the
name of an Icon object that is displayed alongside the application name in the box
displayed by Alt+Tab. For these to take effect, your application must have at least
one visible and active Form.

For the Root object, the value of Posn is (0,0). The value of Size is either (100,100) if
Coord is 'Prop', or the size of the screen in pixels if Coord is 'Pixel'. XRange
and YRange both have the value (0,100). The DevCaps property reports the physical
size of the screen in terms of both pixels and millimetres. It also reports the number of
colours available.

Chapter 2: A-Z Reference 449

The FontList property provides a list of all the character fonts that are available. The
PrintList property provides a list of all the installed printers. These properties are
read-only and may not be changed using ⎕WS

As the default value of Coord is 'Inherit' for all other objects, the value of Coord
for '.' defines the default co-ordinate system. It may be either 'Prop' (the default)
or 'Pixel'. 'Inherit' and 'User' are not allowed.

The CursorObj property is used to define a cursor for the application as a whole. Its
default value is an empty character vector. If it is set to any value other than '' or 0,
the selected cursor overrides the CursorObj values for all other objects. If you want to
indicate that the application is "busy", you can therefore set the CursorObj property
on '.' to an hourglass for the duration of the operation, e.g.

'.' ⎕WS 'CursorObj' 1 ⍝ Set cursor to an hourglass

[lengthy process...]

'.' ⎕WS 'CursorObj' 0 ⍝ Reset cursor

The Yield property specifies how frequently APL yields to Windows during the
execution of code. Its default value is 200 milliseconds.

The EdgeStyle property is used to determine whether or not objects may have 3-
dimensional effects. Setting EdgeStyle to 'None' disables 3-dimensional effects on
all Forms and controls. Setting EdgeStyle to any other value enables 3-dimensional
effects for these objects.

The ExitApp and ExitWindows events can be used to prevent the user closing your
application from the Windows Task List or by terminating Windows.

The expression ⎕EX '.' deletes all objects owned by the current thread except the
Root object itself. In addition, if this expression is executed by thread 0, it resets all
the properties of '.' to their default values.

Rotate Property
Applies To: Font

Description

This property specifies the angle of rotation of the font measured in radians (0 →
○2) from the x-axis in a counter-clockwise direction. Note that only TrueType fonts
can be rotated. Rotated fonts are supported only for use with the Text object.

Chapter 2: A-Z Reference 450

RowChange Method 158
Applies To: Grid

Description

This method is used to change the data in a row of a Grid object.

The argument to RowChange is a 2-element array as follows.

[1] Row number integer

[2] Row data array

Row data must be a scalar or a vector whose length is equal to the number of columns
in the Grid. Its elements may be scalar numbers, character vectors or matrices.

RowHiddenDepth Property
Applies To: Grid

Description

The RowHiddenDepth property identifies which rows of a Grid are currently hidden.

RowLineTypes Property
Applies To: Grid

Description

This property specifies the appearance of the horizontal grid lines in a Grid object.

RowLineTypes is an integer vector, whose length is normally equal to the number of
rows in the Grid. Each element in RowLineTypes specifies an index into the Grid-
LineFCol and GridLineWidth properties, thus selecting the colour and width of the
horizontal grid lines.

For example, if RowLineTypes[1] is 3, the first horizontal grid line in the Grid is dis-
played using the colour specified by the 3rd element of GridLineFCol, and the width
specified by the 3rd element of GridLineWidth.

Note that RowLineTypes is not ⎕IO dependant, and the value 0 is treated the same
as the value 1; both selecting the first colour and line width specified by Grid-
LineFCol and GridLineWidth respectively

Chapter 2: A-Z Reference 451

The default value of RowLineTypes is an empty numeric vector (⍬). If so, all hor-
izontal grid lines are drawn using the first element of GridLineFCol and Grid-
LineWidth.

A horizontal grid line is drawn along the bottom edge of its associated row. One
pixel is drawn inside the row of cells; additional pixels (if any) are drawn between
that row of cells and the next one below.

Rows Property
Applies To: Combo, ComboEx

Description

For Combo objects with Style'Drop' or 'DropEdit' this property determines the
number of rows displayed in the drop-down listbox when it is displayed. Note that
the height of the edit field of a Combo of this type is dependent only upon the size of
the font in use, and cannot otherwise be changed.

Rows is a "read-only" property for a Combo with Style'Simple' and an attempt to
set it in a Combo of this type with ⎕WC or ⎕WS will generate a NONCE ERROR.
Instead, the overall height of a Simple Combo is determined by the first element of
the Size property.

RowSetVisibleDepth Method 173
Applies To: Grid

Description

This method is used to set the maximum visible depth of data in rows of a Grid.

The argument to RowSetVisibleDepth is a numeric scalar as follows

[1] Depth integer

All rows in the grid that have a value of RowTreeDepth less that or equal to Depth
are expanded. Rows with a value of RowTreeDepth greater than Depth are collapsed.

Note:Expanding and Retracting events are not generated when this method is called.

Chapter 2: A-Z Reference 452

Examples
'F'⎕WC'Form' 'Grid: TreeView Feature'
'F.G'⎕WC'Grid'(30 2⍴2/⍳30)
F.G.RowTreeDepth←30⍴0 1 2 2

F.G.RowSetVisibleDepth 1

Chapter 2: A-Z Reference 453

F.G.RowSetVisibleDepth 99

RowTitleAlign Property
Applies To: Grid

Description

The RowTitleAlign property specifies the alignment of row titles in a Grid. It is
either a simple character vector, or a vector of character vectors with one element per
row.

An element of RowTitleAlign may be:'Top', 'Bottom', 'Left', 'Right',
'Centre', 'TopLeft', 'TopRight', 'BottomLeft', or 'BottomRight'.

Note that both spellings 'Centre' and 'Center' are accepted.

RowTitleBCol Property
Applies To: Grid

Description

The RowTitleBCol property specifies the background colour of the row titles in a
Grid object

Chapter 2: A-Z Reference 454

RowTitleBCol may be a scalar that specifies a single background colour to be used
for all of the row titles, or a vector that specifies the background colour of each of the
row titles individually. An element of RowTitleBCol may be an enclosed 3-element
vector of integer values in the range 0-255 which refer to the red, green and blue com-
ponents of the colour respectively, or it may be a scalar that defines a standard Win-
dows colour element (see Bcol for details). Its default value is 0 which obtains the
colour defined for Button Face.

RowTitleDepth Property
Applies To: Grid

Description

RolTitleDepth specifies the structure of a set of hierarchical row titles. It is an integer
vector with the same length as the RowTitles property. A value of 0 indicates that the
corresponding element of RowTitles is a top-level title. A value of 1 indicates that
the corresponding title is a sub-title of the most recent title whose RowTitleDepth is
0; a value of 2 indicates that the corresponding title is a sub-title of the most recent
title whose RowTitleDepth is 1, and so forth. For example:

'F'⎕WC'Form'('Coord' 'Pixel')('Size' 318 310)
'F'⎕WS'Caption' 'Hierarchical Column Titles'
'F.G'⎕WC'Grid'(?12 4⍴100)(0 0)(318 310)
'F.G'⎕WS('TitleWidth' 150)('TitleHeight' 0)
'F.G'⎕WS'CellWidths' 40

Q1←'Q1' 'Jan' 'Feb' 'Mar'
Q2←'Q2' 'Apr' 'May' 'Jun'
Q3←'Q3' 'Jul' 'Aug' 'Sep'
Q4←'Q4' 'Oct' 'Nov' 'Dec'
RT←(⊂'1995'),Q1,Q2,Q3,Q4
RD←0,16⍴1 2 2 2

'F.G'⎕WS('RowTitles'RT)('RowTitleDepth'RD)

'F.G'⎕WS'RowTitleAlign' 'Centre'

Chapter 2: A-Z Reference 455

Note that the LockRows method is not supported in combination with hierarchical
row titles.

RowTitleFCol Property
Applies To: Grid

Description

The RowTitleFCol property specifies the colour of the row titles in a Grid object

RowTitleFCol may be a scalar that specifies a single colour to be used for all of the
row titles, or a vector that specifies the colour of each of the row titles individually.
An element of RowTitleFCol may be an enclosed 3-element vector of integer values
in the range 0-255 which refer to the red, green and blue components of the colour
respectively, or it may be a scalar that defines a standard Windows colour element
(see BCol for details). . Its default value is 0 which obtains the colour defined for But-
ton text.

Chapter 2: A-Z Reference 456

RowTitles Property
Applies To: Grid

Description

This property specifies the headings that are displayed to the left of the rows in a
Grid object. If specified, it must be a vector of character vectors or matrices whose
length is the same as the number of rows implied by the Values property. The default
value of RowTitles is an empty character vector. In this case, the system displays the
row numbers.

To disable the display of row titles in a Grid, you should set the TitleWidth property
to 0.

RowTreeDepth Property
Applies To: Grid

Description

The RowTreeDepth property specifies the structure of the rows in a Grid object. It is
either a scalar 0 or an integer vector of the same length as the number of rows in the
Grid. RowTreeDepth is similar to the Depth property of the TreeView object.

A value of 0 indicates that the corresponding row is a top-level row. A value of 1
indicates that the corresponding row is a child of the most recent row whose Row-
TreeDepth is 0; a value of 2 indicates that the corresponding row is a child of the
most recent row whose RowTreeDepth is 1, and so forth.

When you set RowTreeDepth, the Grid is redrawn so that only rows with a Row-
TreeDepth of 0 are visible.

The RowSetVisibleDepth method can be used to make data visible to a specific
depth.

Chapter 2: A-Z Reference 457

Example:
'F'⎕WC'Form' 'Grid: TreeView Feature'
'F.G'⎕WC'Grid'(30 2⍴2/⍳30)
F.G.RowTreeDepth←30⍴0 1 2 2

The user can interact with the tree images to expand and contract rows of the Grid.

Chapter 2: A-Z Reference 458

RowTreeImages Property
Applies To: Grid

Description

The RowTreeImages property is a simple character vector or ref, or a vector of char-
acter vectors or refs, that specifies the names(s) of, or ref(s) to, Bitmap objects that are
used to display the tree nodes for a Grid object.

Note that images in tree nodes are only displayed if RowTreeStyle is set to
'ImagesOnly', 'ImagesAndLines', or 'AllImagesAndLines'∇.

If RowTreeImages is not specified default images are used.

The Bitmap specified by the 1st element of RowTreeImages is used to display uno-
pened nodes.

The Bitmap specified by the 2nd element of RowTreeImages is used to display
opened nodes.

The Bitmap specified by the 3rd element of RowTreeImages is used to display nodes
without children.

Chapter 2: A-Z Reference 459

Example:
'Closed'⎕WC'Bitmap' 'Folder.bmp'
'Open'⎕WC'Bitmap' 'FolderOpen.bmp'
'Item'⎕WC'Bitmap' 'Ideas'
F.G.RowTreeStyle←'AllImagesAndLines'
F.G.RowTreeImages←'Closed' 'Open' 'Item'

Chapter 2: A-Z Reference 460

RowTreeStyle Property
Applies To: Grid

Description

RowTreeStyle specifies the visible attributes of the tree displayed in the Row titles of
a Grid.

The value of the RowTreeStyle property is a character vector chosen from the fol-
lowing :

'LinesOnly' Only the lines of the tree structure are drawn.

'ImagesOnly'
Only the images of nodes with children are
drawn.

'ImagesAndLines'
Both lines and images for nodes with children
are drawn.

'AllImagesOnly' Images for all nodes are drawn.

'AllImagesAndLines' Both lines and images for all nodes are drawn.

The default value, 'ImagesAndLines', is illustrated in the first picture below.
Other values are displayed in subsequent pictures.

Chapter 2: A-Z Reference 461

F.G.RowTreeStyle←'LinesOnly'

f.g.RowTreeStyle←'ImagesOnly'

Chapter 2: A-Z Reference 462

f.g.RowTreeStyle←'AllImagesOnly'

f.g.RowTreeStyle←'AllImagesAndLines'

Chapter 2: A-Z Reference 463

RTFPrint Method 461
Applies To: RichEdit

Description

This method is used to print the contents (RTFText) of a RichEdit object.

The argument to RTFPrint is ⍬, or a 1 to 4-element array as follows:

[1] Printer name Optional - character vector (see below)

[2] Print range Optional - (see below)

[3] Number of copies Optional - Integer.

[4] Collate Optional - 0 or 1

Printer namemay be the name of an existing Printer object, or the (Windows) name
of an installed printer. If you use the latter, the document will be spooled imme-
diately. An empty vector implies the default printer.

Print rangemay be a simple character vector containing 'All', 'Pages', or
'Selection'. Alternatively, it may be a 3 or 4-element nested vector containing:

[1] 'All', 'Pages', or 'Selection'

[2] Start page (integer)

[3] End page (integer)

[4] Maximum pages (ignored)

Chapter 2: A-Z Reference 464

RTFPrintSetup Method 460
Applies To: Printer, RichEdit

Description

This method is used to display a print set-up dialog box. The dialog box allows the
user to select a particular printer, the pages to be printed and other information. The
user's choices are returned in the result.

The argument to RTFPrintSetup is ⍬, or a 1 to 3-element array as follows:

[1] Print range Optional - (see below)

[2] Number of copies Optional - Integer.

[3] Collate Optional - 0 or 1

Print rangemay be a simple character vector containing 'All', 'Pages', or
'Selection'.

Chapter 2: A-Z Reference 465

Alternatively, it may be a 3 or 4-element nested vector containing:

[1] 'All', 'Pages', or 'Selection'

[2] Start page (integer)

[3] End page (integer)

[4] Maximum pages

Maximum pages (4th element of Print range) may be an integer number, or the name
of a reference object. The latter allows the system to calculate the total number of
pages required. If the object to which the RTFPrintSetup event is sent is a RichEdit,
this is the name of a printer object. If the object to which the RTFPrintSetup event is
sent is a Printer, this is the name of a RichEdit object. Both are required because the
number of pages of a printed document is dependent upon both the content of the
document and the characteristics of the device upon which it will be printed.

If the user presses OK, the result is a 4-element vector containing the user's choices as
follows:

[1] Printer name character vector

[2] Print range (see above)

[3] Number of copies Integer

[4] Collate 0 or 1

Example:
F.T.RTFPrintSetup ('All' 1 1 'PR')

IBM 4039 LaserPrinter PS Pages 2 3 3 1 0

RTFText Property
Applies To: Clipboard, RichEdit

Description

The RTFText property is used to set or retrieve the contents of a Clipboard or a Rich-
Edit object in rich text format (RTF). It is always a character vector.

Chapter 2: A-Z Reference 466

RunMode Property
Applies To: OLEServer

Description

This property specifies the way in which an OLEServer object serves multiple
clients.

RunMode is a character vector and may be 'MultiUse' (the default),
'SingleUse' or 'RunningObject'.

If RunMode is 'MultiUse', OLE will load a single copy of Dyalog APL and the
appropriate workspace into memory. All OLE client processes will communicate
with the same Dyalog APL session.

Note that in this case, each OLE client is actually connected to a separate instance of
the corresponding APL namespace. That is to say, each client will appear to have its
own private copy of the namespace. However, the individual functions and variables
in the namespace are not physically copied until they are changed. This means that,
in general, OLE clients will share APL functions but have private copies of the
namespace variables. However, please remember that global objects in the workspace
or in other namespaces are not instanced and will effectively be shared by all clients
although they are not directly accessible to them.

If RunMode is 'SingleUse', OLE will load a separate copy of Dyalog APL and a
separate copy of the appropriate workspace into memory for each OLE client. Each
OLE client operates directly on the namespace associated with the object and not an
instance of it.

If RunMode is 'RunningObject', OLE will load a single copy of Dyalog APL
and the appropriate workspace into memory. All OLE client processes will com-
municate with the same Dyalog APL session and indeed with the same namespace.
The namespace is not instanced and all objects, including exported variables, are
shared by all clients.

Chapter 2: A-Z Reference 467

Scroll Object
Purpose: Provides a vertical or horizontal scrollbar.

Parents ActiveXControl, CoolBand, Form, Group, PropertyPage, SubForm,
ToolBar, ToolControl

Children Circle, Cursor, Ellipse, Font, Marker, Poly, Rect, Text, Timer

Properties Type, Posn, Size, Coord, Align, Border, Active, Visible, Event,
Thumb, Range, Step, VScroll, HScroll, Limits, Sizeable, Dragable,
BCol, CursorObj, AutoConf, Data, Attach, EdgeStyle, Handle,
Hint, HintObj, Tip, TipObj, Translate, Accelerator, AcceptFiles,
KeepOnClose, Redraw, TabIndex, PageSize, MethodList, ChildList,
EventList, PropList

Methods Detach, GetTextSize, Animate, GetFocus, ShowSIP

Events Close, Create, DragDrop, Configure, ContextMenu, DropFiles,
DropObjects, Expose, Help, KeyPress, GotFocus, LostFocus,
MouseDown, MouseUp, MouseMove, MouseDblClick,
MouseEnter, MouseLeave, MouseWheel, Select, ThumbDrag,
Scroll

Description

The Scroll object provides a vertical or horizontal scrollbar that can be used as a
"free-standing" object or can be "attached" to the side of its parent.

An "attached" scrollbar is one that extends along one edge of a Form, SubForm or
Group and has a standard width or height. When the Form or Group is resized, a ver-
tical attached scrollbar is resized vertically but remains the same width and stays
fixed to the side of its parent. Similarly, a horizontal attached scrollbar is resized hor-
izontally but remains the same height.

For most purposes, the use of the Scroll object to provide attached scrollbars in a
Form has been superseded by the provision of scrollbars as a property of a Form. This
facility was not available in the first release of Dyalog APL/W (Version 6.2).

A "free-standing" scrollbar is typically used as a "scale" for selecting a numeric value
from a range and may appear and behave rather differently from a standard attached
scrollbar. Firstly, a free-standing scrollbar will normally be positioned at an arbitrary
position within its parent Form or Group and be associated with other objects such as
Labels and Edit fields. Secondly, when its parent Form or Group is resized, it is prob-
ably desirable that the scrollbar reacts in the same way as the other child objects, so
that the overall appearance of the layout is maintained.

Chapter 2: A-Z Reference 468

The Align property determines whether or not a scrollbar is attached, and if so, to
which side of the parent Group or Form it is fixed. The direction of the scrollbar is
determined by the VScroll and HScroll properties, which are mutually exclusive. The
position and size of the scrollbar are determined by Posn and Size.

To obtain an "attached" scrollbar, it is sufficient for most purposes to specify only the
Align property. If so, the direction of the scrollbar and its position and size (which
are otherwise defined by VScroll, HScroll, Posn and Size) are determined auto-
matically for you.

To obtain a "free-standing" scrollbar, it is recommended for most purposes that you
set Align to 'None' and define the orientation, position and size of the scrollbar
explicitly using VScroll or HScroll, Posn and Size.

VScroll and HScroll may only be set when the object is created and may not sub-
sequently be changed.

If you do attach a "free-standing" scrollbar to a particular side of its parent using
Align, it will maintain its physical position (in pixels) relative to the side to which it
is attached, and its dimension in that direction will remain fixed.

The Align property is a character vector containing 'Top', 'Bottom', 'Right',
'Left' or 'None'. If you specify Align'Right' you get a vertical scrollbar
attached to the right-hand edge of the parent Form or Group. Align'Left' also
produces a vertical scrollbar, but one that is attached to the left-hand edge.
Align'Top' and 'Bottom' each produce horizontal scrollbars, attached respec-
tively to the top and bottom edges of the Form or Group.

Note that the default value of Align is 'Right' unless HScroll is set to ¯1 in which
case it is 'Bottom'. It must therefore be explicitly set to 'None' if you want a
non-attached "free-standing" scrollbar.

VScroll and HScroll are used to specify the orientation of the scrollbar explicitly,
usually in conjunction with Align set to 'None'. VScroll or HScroll may be spec-
ified when the object is created by ⎕WC, but cannot be changed using ⎕WS. The two
properties are mutually exclusive. Each of themmay be set to 0 or ¯1, where ¯1
means "true" and 0 means "false". Thus (VScroll¯1) defines a vertical scrollbar, while
(HScroll¯1) specifies a horizontal one. Setting either property to ¯1 automatically
causes the other to be set to 0. If you try to set both to ¯1, VScroll takes precedence
and HScroll is reset to 0.

[Note: the reason for using two properties where one would be sufficient is to allow
for the possible future implementation of scrolling groups as provided by ⎕SM/⎕SR.]

Chapter 2: A-Z Reference 469

Scrolling is controlled by the Thumb, Range and Step properties.

Thumb sets and reports the current position of the "thumb" as an integer in the range
1 to the value of the Range property.

Step determines the size of changes reported when the user clicks a scroll arrow
(small change) or clicks on the body of the scrollbar (large change). Step is a 2-ele-
ment numeric vector whose first element specifies the value of the "small change"
and whose second element specifies the value of the "large change". The PageSize
property specifies the sizes of the thumb in the scrollbar.

Examples of Attached Scrollbars:
'F' ⎕WC 'Form' 'Default Scroll Bar'
'F.SCR' ⎕WC 'Scroll'

'F' ⎕WC 'Form' 'Default Horizontal Scroll Bar'
'F.SCR' ⎕WC 'Scroll' ('HScroll' ¯1)

Examples of Free-Standing Scrollbars:
'F' ⎕WC 'Form' 'Non-Default Scroll Bar'
'F.SCR' ⎕WC 'Scroll' (5 45)(90 10)

('Align' 'None')('VScroll' ¯1)

'F' ⎕WC 'Form' 'Horizontal Scroll Bars'
'F.SC1' ⎕WC 'Scroll' (15 15)(15 70)

('Align' 'None')('HScroll' ¯1)
'F.SC2' ⎕WC 'Scroll' (40 40)(20 20)

('Align' 'None')('HScroll' ¯1)
'F.SC3' ⎕WC 'Scroll' (85 5)(10 90)

('Align' 'None')('HScroll' ¯1)

Scroll Event 37
Applies To: Scroll, TrackBar

Description

If enabled, this event is generated when the user attempts to move the thumb in a
scrollbar. This can be done in one of three ways :

1. dragging the thumb.
2. clicking in one of the "arrow" buttons situated at the ends of the scrollbar.

This is termed a small change, the size of which is defined by Step[1].
3. clicking in the body of the scrollbar. This is termed a large change, the size

of which is defined by Step[2].

Chapter 2: A-Z Reference 470

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 4-element vector as follows :

[1] Object ref or character vector

[2] Event 'Scroll' or 37

[3] Scroll Type numeric

[4] Position numeric

The value of Scroll Type is 0 (drag), 1 or ¯1 (small change) or 2 or ¯2 (large change).
The sign indicates the direction.

The value of Position is the new (requested) position of the thumb. Notice however,
that the event is generated before the thumb is actually moved. If your callback func-
tion returns a scalar 0, the position of the thumb will remain unaltered.

ScrollOpposite Property
Applies To: TabControl

Description

The ScrollOpposite property specifies that unneeded tabs scroll to the opposite side
of a TabControl, when a tab is selected.

ScrollOpposite is a single number with the value 0 (normal scrolling) or 1 (scrolling
to the opposite side); the default is 0.

The picture below illustrates a TabControl with ScrollOpposite set to 1, after the user
has clicked Third Tab.

Chapter 2: A-Z Reference 471

Setting ScrollOpposite to 1 implies that MultiLine is also 1. If you set ScrollOpposite
to 1 in a ⎕WC statement, the MultiLine property will automatically be set to 1, even if
you try to set MultiLine to 0 in the same statement. If you subsequently change Mul-
tiLine back to 0 using ⎕WS , this will work, but the effect is not useful and it is not
supported.

SelDate Property
Applies To: Calendar

Description

The SelDate property identifies the range of dates that is currently selected in a Cal-
endar object.

SelDate is a 2-element integer vector of IDN values that identifies the first and last
dates that are currently selected.

SelDateChange Event 265
Applies To: Calendar

Description

If enabled, this event is reported when the user changes the date, or range of dates,
that is selected in a Calendar object. This event is also reported when the Calendar
object is scrolled and the selection changes automatically to another month.

This event is reported for information alone. You may not disable or nullify the event
by setting the action code for the event to ¯1 or by returning 0 from a callback func-
tion.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 4-element vector as follows :

[1] Object ref or character vector

[2] Event 'SelDateChange' or 265

[3] First Date an integer (IDN)

[4] Last Date an integer (IDN)

Chapter 2: A-Z Reference 472

Select Event 30
Applies To: ActiveXControl, Bitmap, Button, ButtonEdit, Calendar, Circle,

Clipboard, Combo, ComboEx, Cursor, DateTimePicker, Edit,
Ellipse, FileBox, Font, Form, Grid, Group, Icon, Image, Label, List,
ListView, Locator, Marker, MDIClient, Menu, MenuItem, Metafile,
Poly, Printer, ProgressBar, Rect, RichEdit, Scroll, Spinner, Static,
StatusBar, StatusField, SubForm, TabBar, TabBtn, TabButton, Text,
ToolBar, ToolButton, TrackBar, TreeView, UpDown

Description

For a Button with Style'Push' this event is generated when the user "pushes" the
button. This can be done by clicking the left mouse button, or by pressing the Enter
key or the space bar when the Button has the focus. The Select event can also be gen-
erated when the Button does not have the focus, by pressing the Enter key when its
Default property is 1 or by pressing the ESC key when its Cancel property is 1.

For a Button with Style'Radio' or 'Check' this event is generated when the user
toggles the button from one state to another. This can be achieved by clicking the left
mouse button or by pressing the space bar when the Button has the focus.

For a Combo or List object, a Select event is generated when the user selects an item
from the list, whether by pressing the arrow keys or by clicking the left mouse button.

For a MenuItem, a Select event is generated when the user chooses the item.

For all other objects, this event is generated when the user presses the keys associated
with the object's Accelerator property.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 2-element vector as follows :

[1] Object ref or character vector

[2] Event Event code

Chapter 2: A-Z Reference 473

SelectionBorderWidth Property
Applies To: Grid

Description

The SelectionBorderWidth property specifies the width of the border that is drawn
around the currently selected block of cells. It is expressed in pixels.

SelectionColor Property
Applies To: Grid

Description

The SelectionColor property specifies the colour used to highlight the currently
selected block of cells and, if HighlightHeaders is 1, the corresponding row and col-
umn headings. See also "SelectionColorAlpha" on page 473.

SelectionColorAlpha Property
Applies To: Grid

Description

The SelectionColorAlpha property is a 2-element integer vector that specifies the
degree of transparency or shade of the colour that is used to highlight the currently
selected block of cells in a Grid. See "SelectionColor" on page 473.

The first element refers to the shade to be used when the Grid has the input focus; the
second to when it doesn't. Each element is an integer in the range 0 (invisibly light)
to 255 (fully dark).

Chapter 2: A-Z Reference 474

SelImageIndex Property
Applies To: ComboEx, TreeView

Description

The SelImageIndex property determines which bitmapped images in an ImageList cor-
respond to items in a TreeView object when the item is selected. It is an integer vec-
tor whose length is the same as the number of items in the object and is ⎕IO
dependent.

See also ImageIndex

SelItems Property
Applies To: Combo, ComboEx, Grid, List, ListView, TreeView

Description

This property determines which (if any) of the items in an object are currently
selected and highlighted. Except in a Grid, it is a Boolean vector with one element
per item in the list. A value of 1 means "selected"; 0 means "not selected".

This property is used after a Select event to identify which item has been chosen. In a
Combo or a List with Style'Single' it will contain only a single 1.

SelItems should also be used to pre-set the contents of the edit field in a Combo box
with Style'Drop'. In Combo boxes with Style'Simple' or 'DropEdit', the
contents of the edit field may also be specified by the Text property. If you specify
both, the value of Text takes precedence.

In a Grid SelItems is a 2-element vector of 2-element integer vectors that identifies
the row and column coordinates of the first and last cells in the currently selected
block of cells. If multiple selection is enabled, SelItems may be a vector of such
arrays, specifying the coordinates of a number of non-contiguous blocks of selected
cells.

Chapter 2: A-Z Reference 475

SelRange Property
Applies To: TrackBar

Description

The SelRange property specifies the selected range in a TrackBar which has Style
'Selection'. It is a 2-element numeric vector.

SelText Property
Applies To: Combo, ComboEx, Edit, RichEdit

Description

This property determines or identifies the portion of text in an object that is currently
selected and highlighted. It can be used to pre-select all or part of the text to be
replaced or deleted when the user starts typing. It can also be used to query the area
of text that the user has highlighted. This can be useful if you want to implement
your own cut/paste/replace features.

SelText is always a 2-element integer vector. If the field contents (defined by the
Text property) is a vector, SelText is simple. Its first element is the index of the first
selected character and its second element is 1 + the index of the last selected char-
acter. The length of the selected string is therefore obtained by subtracting the first
element from the second.

If there are no characters selected, the two elements are equal and specify the current
position of the input cursor.

If the contents is a vector of vectors or a matrix, each element of SelText is a 2-ele-
ment vector. The first item in each of the elements indexes the vector (in a vector of
vectors) or row (in a matrix). The second item in each element indexes the position of
the character in the vector or along the row. Again, the value reported for the last char-
acter in the selected string is 1 + its index.

Chapter 2: A-Z Reference 476

Separator Object
Purpose: A horizontal or vertical line used to separate items in a menu.

Parents Menu, MenuBar

Children Timer

Properties Type, Posn, Style, Event, FCol, BCol, Data, EdgeStyle, Translate,
KeepOnClose, MethodList, ChildList, EventList, PropList

Methods Detach

Events Close, Create

Description

This object provides a vertical or horizontal line to separate items in a Menu. It may
also be used to split a MenuBar over more than one line.

The orientation of the Separator is determined by its Style property, which may be
'Horz' (horizontal) or 'Vert' (vertical). The default is 'Horz'.

If you want to provide a menu with a 3-Dimensional (pushbutton) appearance, you
should also set the EdgeStyle property on any Separator objects in it. Alternatively,
you can achieve the same effect by setting the background colour (BCol) for the Sep-
arators to grey (192 192 192).

The Posn property is a single integer number which specifies the positional index of
the Separator relative to the other objects in the Menu. A Separator does not generate
any events.

Like other components of a menu, the position of a Separator is normally determined
by the order in which it is created in relation to other objects with the same parent.
However, you can use the Posn property to insert a Separator into an existing struc-
ture. For example, having defined three MenuItem objects as children of a Menu, you
can insert a Separator between the first and the second by specifying its Posn to be 2.
Note that the value of Posn for the MenuItems that were previously second and third
will then be reset to 3 and 4 respectively.

If you put a Separator (either Style) into a MenuBar, it has the effect of adding
another line to it. Any items added after the Separator will appear in the new line.

Chapter 2: A-Z Reference 477

ServerVersion Property
Applies To: OLEServer

Description

This property specifies the version number of an OLEServer object.

It is a 2-element integer vector that specifies the major and minor version numbers
respectively.

The default value of ServerVersion is (1 0).

SetCellSet Method 171
Applies To: Grid

Description

The SetCellSet method sets the value of the CellSet property of a Grid for a particular
cell.

The argument to SetCellSet is a 3-element array as follows:

[1] Row integer

[2] Column integer

[3] Value 0 or 1

Chapter 2: A-Z Reference 478

SetCellType Method 156
Applies To: Grid

Description

This method is used to change the type of a particular cell in a Grid.

The argument to SetCellType is a 3-element vector as follows :

[1] Cell row integer

[2] Cell column integer

[3] Cell type integer

SetColSize Event 176
Applies To: Grid, ListView

Description

If enabled, this event is reported when the user changes the width of a column in a
Grid or ListView object, or changes the width of the row titles in a Grid. This may be
done by dragging a border with the mouse or by double-clicking over a border. In the
former case, the default action is to adjust the width of the appropriate column or the
width of the row title area to the size selected by the user. In the latter case, the
default action is to adjust the width to the maximum required to display all the data.

In either case, you can disable the default action by setting the event action code to
¯1 or you can selectively prevent a particular resize operation from taking place by
returning 0 from a callback function.

Chapter 2: A-Z Reference 479

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 5-element vector as follows :

[1] Object ref or character vector

[2] Event 'SetColSize' or 176

[3] Column number
Integer. This is sensitive to the index origin, ⎕IO,
but is ¯1 if the user has resized the row titles in a
Grid.

[4] Width
Integer containing the value of the (new)column
width. This is ¯3 if the user has double-clicked to
request automatic width adjustment.

[5] Undo flag 0 or 1

You can resize a column or resize the row titles under program control by calling Set-
ColSize as a method. If you specify ¯1 as theWidth parameter, the column will be
resized to its default width .. If you specify a value of ¯2 the column will be resized
to fit the data. The following expression will size the first NCOLS columns of a Grid
called F.G to fit the data and the column titles:

{F.G.SetColSize⍵ ¯3}¨⍳NCOLS

The Undo flag is applicable only to a Grid object and is always 1 if the event was
generated by the user.

SetEventInfo Method 547
Applies To: ActiveXControl, OLEServer

Description

This method is used to register an event that may be generated by an ActiveXControl
or OLEServer object.

A host application that wishes to attach a callback function to an event in a Dyalog
APL ActiveXControl or OLEServer, needs to know the name of the event and the
number and data types of any parameters that the event may supply. It also needs to
know the data type (if any) of the result that the callback function may be expected
to pass back to the control.

An ActiveXControl or OLEServer generates an event in the host application using 4
⎕NQ. The right argument is a vector whose first 2 elements are character vectors con-
taining the names of the ActiveXControl or OLEServer and the event respectively.
The parameters for the event are passed as additional elements in the argument.

Chapter 2: A-Z Reference 480

Another way to think about it is that when you generate an event using 4 ⎕NQ, you
are effectively calling a function, of your specification, in the host application. To
enable the host application to accept the function call, it needs to know the number
of parameters that you will supply and their data types.

A further consideration is that if you specify that the data type of a parameter is a
pointer (e.g. 'VT_PTR TO I4') this will allow a callback function to modify the
parameter in-situ. If so, the result returned by 4 ⎕NQ will be the modified values of
any such parameters; this is a similar mechanism to ⎕NA.

The argument to SetEventInfo is a 1, 2 or 3-element array as follows:

[1] Event name character vector

[2] Event info nested array (see below)

[3] Help ID integer

Event info
Event info, specifies an optional help string which describes what the event does, the
data type of the result (if any) and the names and data types of its arguments.

If the event is fully described, each element of Event Info is a 2-element vector of
character vectors. The first element contains the help string and the COM data type of
the result that the callback function in the host application is expected to supply. Sub-
sequent elements contain the name and COM data type of each of the parameters sup-
plied by the event.

However, both the help string and the names of the parameters are optional and may
be omitted. If so, one or more elements of Event Info may be a simple character vec-
tor.

Help ID
This is an integer value that identifies the help context id for the event within the
help file associated with the HelpFile property of the ActiveXControl object. The
value ¯1means that no help is provided. APL stores this information in the registry
fromwhere it may be retrieved by the host application.

Chapter 2: A-Z Reference 481

Example
The example Dual ActiveXControl, that is fully described elsewhere, generates a
ChangeValue1 event. This event occurs when the user moves the thumb in a Track-
Bar that is internal to an instance of the ActiveXControl.

The external ChangeValue1 event is fired by an internal APL callback function
(called ChangeValue) that is attached to ThumbDrag and Scroll events on the
TrackBar object. The internal callback function is :

[0] ChangeValue MSG
[1] ⍝ Callback for ThumbDrag and Scroll
[2] Value1←4 ⎕NQ'' 'ChangeValue1'(⊃¯1↑MSG)
[3] CalcValue2
[4] 'V1'⎕WS'Text'(⍕Value1)
[5] 'V2'⎕WS'Text'(⍕Value2)

Note that ChangeValue[2] generates the external ChangeValue1 event by invok-
ing 4 ⎕NQ, passing it the new value provided by the TrackBar. However, the host
application is permitted to modify that value, returning it in the result of 4 ⎕NQ. This
result, rather than the TrackBar value itself, is then used to update other (Label) con-
trols in the object.

The following statements were used to declare the ChangeValue1 event The event
provides a single parameter named Value1 that may be modified in-situ by a callback
function in the host application. The callback is not, otherwise, expected to return a
result.

INFO←⊂'Occurs when the value of the control is
changed' 'VT_VOID'

INFO,←⊂'Value1' 'VT_PTR TO VT_I4'
F.Dual.SetEventInfo 'ChangeValue1' INFO

If the host application was Visual Basic, a suitable callback function might be:

Private Sub Dual1_ChangeValue1(Value1 As Long)
Value1=2*(Value1\2)
End Sub

This callback function receives the proposed new value of the control as the param-
eter Value1, and modifies it, forcing it to be an even number.

Chapter 2: A-Z Reference 482

SetFinishText Method 366
Applies To: PropertySheet

Description

The SetFinishText method sets the caption of the Finish button in a Wizard-style
PropertySheet.

The argument to SetFinishText is a single item as follows:

[1] Finish button text character vector

SetFnInfo Method 545
Applies To: ActiveXControl, OLEServer

Description

This method is used to describe an APL function that is to be exported as a method, a
Property Get Function, or a Property Put Function of an ActiveXControl or OLE-
Server object.

An exported function must be a niladic or monadic defined function (dynamic func-
tions and derived functions are not allowed) and may optionally return a result.
Ambivalent functions (functions with optional left argument) are allowed, but will
be called monadically by the host application.

COM syntax differs from APL syntax in many ways and the SetFnInfo method is
required to declare an APL function to COM in terms that COM understands. In par-
ticular, although monadic APL functions take just one argument, COM functions
may take several parameters, and some may be optional.

A function exported by SetFnInfo will be called by a host application with the
number of parameters that SetFnInfo has described. The argument received when the
function is called by a host application, will be a nested vector of this length.

The argument to SetFnInfo is a 2, 3 or 4-element array as follows:

[1] Function name character vector

[2] Function info nested array (see below)

[3] Help ID integer

[4] Function type integer

[5] Property name character vector

Chapter 2: A-Z Reference 483

Function info
This specifies an optional help string which describes what the function does, the
data type of the result (if any) and the names and data types of its arguments.

If the function syntax is fully described, each element of Function Info is a 2-element
vector of character vectors. The first element contains the help string and the COM
data type of the function's result. Subsequent elements contain the name and COM
data type of each parameter.

However, both the help string and the names of the parameters are optional and may
be omitted. If so, one or more elements of Function Info may be a simple character
vector.

Consider a very basic function ADD in an ActiveXControl called F.dbase, that is
designed to add a record to a personnel database. The database consists only of a list
of names, ages and addresses.

Function ADD expects to be called with a name (character string), age (number) and
address (character string), and returns a result 0 or 1 (Boolean) according to whether
the record was successfully added. This function could be declared as follows:

HELP←'Adds a new record to the personnel database'
SPEC←⊂(HELP 'VT_BOOL') ⍝ Result is boolean
SPEC,←⊂('Name' 'VT_BSTR') ⍝ 1st param called

'Name' is a string
SPEC,←⊂('Age' 'VT_I4') ⍝ 2nd param called

'Age' is an integer
SPEC,←⊂('Address' 'VT_BSTR')⍝ 3rd param called

'Address' is a string

F.dbase.SetFnInfo 'ADD' SPEC

Alternatively, but much less helpfully, the function could be declared to take a single
unnamed nested argument, leaving it to the host application programmer to guess at
its structure :

SPEC←⊂('' 'VT_BOOL') ⍝ No help string,
result is boolean

SPEC,←⊂('' 'VT_ARRAY OF VT_VARIANT') ⍝ Param is a
nested array

F.dbase.SetFnInfo 'ADD'SPEC

Chapter 2: A-Z Reference 484

Help ID
This is an integer value that identifies the help context id within the help file asso-
ciated with the HelpFile property of the ActiveXControl object. The value ¯1means
that no help is provided. APL stores this information in the registry fromwhere it
may be retrieved by the host application.

Function type
This specifies the type of function being exported. This is an integer with one of the
following values:

In both these last two cases, the name of the property, which is totally independent of
the name of the APL function, is given as Property name.

If omitted, the function type ismethod.

SetItemImage Method 315
Applies To: TreeView

Description

This method is used to allocate a picture icon to a particular item in a TreeView
object.

The argument to SetItemImage is a 2-element array as follows:

[1] Item number Integer.

[2] Picture index Integer.

Item number is the index of the item concerned.

Picture index is an index into the array of bitmapped images in the corresponding
ImageList object which is referenced via the ImageListObj property.

Chapter 2: A-Z Reference 485

SetItemPosition Event 322
Applies To: ListView

Description

If enabled, this event is reported when the user drag-drops an item within a ListView
object. This operation may be disabled by returning 0 from a callback function.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 7-element vector as follows :

[1] Object ref or character vector

[2] Event 'SetItemPosition' or 322

[3] Item number Integer. The index of the item.

[4] Y-position Integer. New y-position of the item.

[5] X-position Integer. New x-position of the item.

[6] Button number Integer. The mouse button used to perform the drag.

[7] Shift State

Integer: Sum of shift key codes (number)
1 = Shift key is down
2 = Ctrl key is down
4 = Alt key is down

SetItemState Method 307
Applies To: ListView, TreeView

Description

This method is used to set the status of a particular item in a ListView or TreeView
object.

The argument to SetItemState is a 2-element array as follows:

[1] Item number Integer. The index of the item concerned.

[2] Status Integer

Chapter 2: A-Z Reference 486

The status of an item is calculated as the sum of one or more of the following state
codes:

¯1 Error (most likely that the Item number is invalid)

1 Item has the focus

2 Item is selected

8 Item is highlighted for dropping

16 Item is displayed in bold text

32 Item is expanded

64 Item is or has been expanded

4096 Item is checked. See "CheckBoxes" on page 118

SetMethodInfo Method 556
Applies To: OCXClass, OLEClient

Description

This method is used to redefine the arguments or data types associated with a method
that is exported by a COM object. SetMethodInfo is used to override the information
provided by the object's Type Library.

The argument to SetMethodInfo is a 2 or 3-element array as follows:

[1] Method name character vector

[2] Method info nested vector (see below)

[3] Method index integer

If you wish to describe the method completely, the structure ofMethod info should
be identical to the structure returned by GetMethodInfo, although abbreviated for-
mats are also allowed.

If the object exports the method directly, and not through the standard IDispatch
interface, you must also specify Method Index, which is the index of the method in
the object's virtual table (vtable). This information may be available in printed doc-
umentation or in a C-language header file.

Chapter 2: A-Z Reference 487

For example, the InchesToPoint method exported by Excel.Application takes a single
argument whose name is Arg1 and whose data type is VT_R8. The function returns a
result of the same data type. The details provided in the Excel.Application Type
Library are in fact correct, but if you wanted to redefine them, the following state-
ments could be used to describe the InchesToPoints method.

'EX' ⎕WC 'OLEClient' 'Excel.Application'
('AutoBrowse' 0)

methodinfo← ('' 'VT_R8')('Arg1' 'VT_R8')
EX.SetMethodInfo 'InchesToPoints' methodinfo

Note that the structure of variable methodinfo is identical to the result of the Get-
MethodInfo method.

DISPLAY methodinfo
.→-----------------------------------.
| .→------------. .→---------------. |
	.⊖. .→----.		.→---. .→----.									
				VT_R8				Arg1		VT_R8		
	'-' '-----'		'----' '-----'									
'∊------------' '∊---------------'												
'∊-----------------------------------'

DISPLAY EX.GetMethodInfo 'InchesToPoints'
.→-----------------------------------.
| .→------------. .→---------------. |
	.⊖. .→----.		.→---. .→----.									
				VT_R8				Arg1		VT_R8		
	'-' '-----'		'----' '-----'									
'∊------------' '∊---------------'												
'∊-----------------------------------'

Unless you are going to call the method using the names of its arguments, these
names are clearly superfluous and may be omitted, for example:

methodinfo← 'VT_R8' 'VT_R8'
EX.SetMethodInfo 'InchesToPoints' methodinfo

Chapter 2: A-Z Reference 488

SetPropertyInfo Method 554
Applies To: OCXClass, OLEClient

Description

This method is used to redefine a property that is exported by a COM object. Set-
PropertyInfo is used to override the information provided by the object's Type
Library.

The argument to SetPropertyInfo is a 2 or 3-element array as follows:

[1] Property name character vector

[2] Property info nested vector

[3] Property function integer

For example, the Visible property exported by Excel.Application has the data type
VT_BOOL and may be declared as follows:

'EX' ⎕WC 'OLEClient' 'Excel.Application'
EX.SetPropertyInfo 'Visible' 'VT_BOOL'

Property function may be required if the property value is retrieved or set via a func-
tion. This typically applies if the property takes parameters and will result in the prop-
erty being fixed as a function rather than as a variable. Such properties may have a
PropertyGet function, a PropertyPut function and/or a PropertyPutByReference func-
tion. If so, it is necessary to say to which of these three functions the details apply.
The value of Property function is an integer 2 (PropertyGet), 4 (PropertyPut), or 8
(PropertyPutByReference).

For example, the following statement declares the PropertyGet function for the Item
property of the Fields collection of the OLE object DAO.DBEngine. This property
takes an index (into the collection) and returns an object.

Fields.SetPropertyInfo 'Item'('VT_DISPATCH' 'VT_
I4')2

Chapter 2: A-Z Reference 489

SetRowSize Event 175
Applies To: Grid

Description

If enabled, this event is reported when the user changes the height of a row or
changes the height of the column titles. This may be done by dragging a border with
the mouse or by double-clicking over a border. In the former case, the default action
is to adjust the height of the appropriate row or the height of the column title area to
the size selected by the user. In the latter case, the default action is to adjust the
height to the maximum required to display all the data.

In either case, you can disable the default action by setting the event action code to
¯1 or you can selectively prevent a particular resize operation from taking place by
returning 0 from a callback function.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 5-element vector as follows :

[1] Object ref or character vector

[2] Event 'SelRowSize' or 175

[3] Row number Integer. This is sensitive to the index origin, ⎕IO, but
is ¯1 if the user has resized the column titles.

[4] Height
Integer containing the value of the (new) row height.
This is ¯3 if the user has double-clicked to request
automatic height adjustment.

[5] Undo flag 0 or 1

You can resize a row or resize the column titles under program control by calling
SetRowSize as a method. If you specify ¯1 as the Height parameter, the row will be
resized to its default height .. If you specify a value of ¯2 the row will be resized to
fit the data. The following expression will set the heights of first NROWS rows of a
Grid called F.G to fit the data and the row titles.

{F.G.SetRowSize⍵ ¯3}¨⍳NROWS

The Undo flag is always 1 if the event was generated by the user.

Chapter 2: A-Z Reference 490

SetSpinnerText Event 421
Applies To: Spinner

Description

If enabled, this event is generated when the user clicks one of the spin buttons in a
Spinner object. The event is reported after the value of the Thumb property has been
updated but before the Text property has been changed. You may use this event to
set the text in the Spinner dynamically instead of relying on it being updated auto-
matically.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 4-element vector as follows :

[1] Object ref or character vector

[2] Event 'SetSpinnerText' or 421

[3] Thumb value
Integer. The new value of the Thumb property
resulting from the user pressing one of the spin
buttons.

[4] Text The text that is about to be put into the edit field.

The SetSpinnerText event is designed to allow you to dynamically set the text in the
Spinner in response to a spin button. It might be used in circumstances where the set
of items you wish to present to your user is not predictable in advance.

Setup Method 101
Applies To: Printer

Description

This method causes the system to display a standard Printer Setup dialog box and
thereby allows the user to alter the printer settings. This is a "modal" dialog box that
must be closed before the APL application can continue.

The Setup method is niladic.

If you attach a callback function to this event and have it return a value of 0, the
dialog box will not appear.

Chapter 2: A-Z Reference 491

SetVarInfo Method 546
Applies To: ActiveXControl, OLEServer

Description

This method is used to describe an APL variable that is to be exported as a property
of an ActiveXControl or OLEServer object.

The argument to SetVarInfo is a 2 or 3-element array as follows:

Variable info is either a simple character vector that specifies the COM data type of
the variable, or a 2-element vector of character vectors whose first element specifies a
help string and whose second element specifies the COM data type.

Help ID is an optional integer value that identifies the help context id within the
help file associated with the HelpFile property of the ActiveXControl object. The
value ¯1means that no help is provided. APL stores this information in the registry
fromwhere it may be retrieved by the host application.

SetWizard Event 365
Applies To: PropertyPage

Description

If enabled, this event is reported when the user has clicked the Next or Back button
in a PropertySheet with Style 'Wizard'. This action also generates PageNext (or
PageBack) and PageDeactivate and PageActivate events. The SetWizard event is the
final event to be reported as a result of this action, and is the only one that is affected
by the result of a callback function. The event message reports the active/inactive
state of the 3 page changing buttons (Back, Next and Finish) that should result from
the action. Note that the Next and Finish buttons occupy the same position and are
mutually exclusive.

Chapter 2: A-Z Reference 492

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 5-element vector as follows :

[1] Object ref or character vector

[2] Event 'SetWizard' or 365

[3] Active state Back 0 or 1

[4] Active state Next 0 or 1

[5] Active state Finish 0 or 1

[6] Finish caption character vector

You may alter the state of the buttons by changing elements [3-5] of the event mes-
sage and returning it as a result of your callback. You may also set the state of the but-
tons at any time by calling SetWizard as a method.

When the event is reported by ⎕DQ, element 6 is an empty vector. If you modify it
and return it in the result of a callback, the caption of the Finish button changes
accordingly and the Back and Next buttons disappear. This happens regardless of the
states you specified in elements [3-5].

ShowBalloonTip Method 860
Applies To: SysTrayItem

Description

The ShowBalloonTip method displays a BalloonTip in a SysTrayItem object.

The argument to ShowBalloonTip is a 1, 2, 3 or 4-element array as follows:

[1] Title character vector

[2] Text character vector or matrix

[3] Icon Integer scalar, a character vector or a ref

[4] Flags Integer

The Title parameter is the text to be displayed in the BalloonTip title (maximum
length 64).

The Text parameter is the text (maximum length 256) to be displayed in the Bal-
loonTip. If omitted or empty, the BalloonTip is not displayed.

Chapter 2: A-Z Reference 493

If the Icon parameter is an integer, it means:

0 No icon

1 Information icon

2 Warning icon

3 Error icon

Other values represent the name or a ref to an Icon object. If the Icon parameter is
omitted, no icon is displayed in the BalloonTip.

If the Icon parameter specifies a large Icon object (32 x 32 bits) the Flags parameter
must be 32. Otherwise this parameter is not used.

Windows XP
UnderWindows XP, only small (16x16) icons are supported. Furthermore, the Bal-
loonTip uses the icon associated with the SysTrayItem itself regardless of the custom
icon specified by ShowBalloonTip. However, the following code provides a work-
around, which is to switch the icon for the SysTrayItem itself to the desired icon tem-
porarily, just for the invocation of the ShowBalloonTip method.

Example (XP)
∇ XPBalloonTip;tmpIcon;text;title

[1] 's'⎕WC'SysTrayItem' ⍝ default (APL) icon
[2] 'star'⎕WC'Icon'('Shell32.dll' ¯43)
[3] tmpIcon←s.IconObj
[4] s.IconObj←star
[5] text←'Hello World'
[6] title←'Custom BalloonTip icon under XP'
[7] s.ShowBalloonTip title text star
[8] s.IconObj←tmpIcon

∇

Chapter 2: A-Z Reference 494

ShowCaptions Property
Applies To: ToolControl

Description

The ShowCaptions property specifies whether or not the captions of individual Tool-
Button objects are drawn. ShowCaptions is a property of the parent ToolControl
object.

ShowCaptions is a single number with the value 0 (ToolButton captions are not
shown) or 1 (ToolButton captions are shown); the default is 1

ShowCaptions allows you to toggle end-user preferences for the display of Tool-
Button captions, without having to set/clear individual captions one by one.

Chapter 2: A-Z Reference 495

ShowComment Event 223
Applies To: Grid

Description

If enabled, a Grid will generate a ShowComment event when the user rests the mouse
pointer over a commented cell. You may use this event to modify the appearance of
the comment dynamically.

The event message reported as the result of ⎕DQ or supplied as the right argument to
your callback function is an 8-element vector containing the following:

[1] Object ref or character vector

[2] Event 'ShowComment' or 223

[3] Cell row integer

[4] Cell column integer

[5] Comment text character vector

[6] Window height integer, pixels

[7] Window width integer, pixels

[8] Tip behaviour flag (1 = yes; 0 = no)

A callback function may modify the standard behaviour. You may prevent the com-
ment from being displayed by returning 0 as the result of the callback. Alternatively,
you may modify the comment text, its window size, or its pop-up behaviour by
changing the appropriate element(s) of the event message and returning the new
event message as the result.

Note that if the comment window relates to a row or column title, the value reported
in element [3] or [4] of the event message is ¯1.

You may display the comment associated with a particular cell under program con-
trol by calling ShowComment as a method. In this case, only the Cell row and Cell
column parameters need be specified. If however, you wish to override the comment
text and/or its window size, you may do so (temporarily) by specifying the cor-
responding parameters. By default, a comment displayed under program control does
not exhibit tip behaviour but remains visible until it is explicitly removed using the
HideComment method.

Note that a comment will only be displayed if the specified cell is marked as a com-
mented cell.

Chapter 2: A-Z Reference 496

ShowCueWhenFocused Property
Applies To: ButtonEdit, Edit

Description

This Boolean property specifies whether or not the text specified by the property
should be displayed once the user has tabbed into or clicked on the empty input field
(and thus given it the focus). For an Edit object it applies only if the Style of the Edit
obect is 'Single'.

ShowDropDown Property
Applies To: ColorButton, ToolControl

Description

The ShowDropDown property specifies whether or not a drop-down menu symbol is
drawn in a ColorButton or alongside ToolButton objects which have
Style'DropDown'.

ShowDropDown is a single number with the value 0 (drop-downs captions are not
shown) or 1 (drop-downs are shown); the default is 1.

ShowDropDown also affects the behaviour of ToolButton objects which have Style
'DropDown'.

If the ShowDropDown property of the parent ToolControl is 0, clicking the Tool-
Button causes the popup menu to appear. In this case, the ToolButton itself does not
itself generate a Select event; you must rely on the user selecting a MenuItem to spec-
ify a particular action.

If the ShowDropDown property of the parent ToolControl is 1, clicking the drop-
down button causes the popup menu to appear; clicking the ToolButton itself gen-
erates a Select event, but does not display the popup menu.

The following picture illustrates a ToolControl with ShowDropDown set to 1.

Chapter 2: A-Z Reference 497

ShowHelp Method 580
Applies To: OCXClass, OLEClient

Description

This method is used to display the Windows help file for aCOM object or the help
topic associated with one of its properties, events or methods.

The argument to ShowHelp is ⍬, or a single item as follows :

[1] Topic character vector.

Topic specifies the name of a property, event or method.

In the case of an OLE Control, the Obect name may be the name of the OCXClass or
an instance of the OCXClass.

ShowInput Property
Applies To: Grid

Description

This property specifies whether or not the cells in a Grid are displayed using their
associated input objects.

The ShowInput property is either a single boolean value that applies to all the cells
in a Grid, or it is a vector whose elements are mapped to individual cells via the Cell-
Types property. A value of 0 means that the corresponding cell is displayed nor-
mally. A value of 1 indicates that the cell is displayed using its associated input
object, as it is when it is the current cell. ShowInput is relevant to cells displayed
using Combo and Button objects.

Chapter 2: A-Z Reference 498

The example below illustrates the appearance of a Grid in which ShowInput is set to
0 for the Job Title column and 1 for the Region and Permanent columns.

The appearance of the same Grid but with ShowInput set to 0 throughout is illus-
trated below:

Chapter 2: A-Z Reference 499

ShowItem Method 316
Applies To: TreeView

Description

This method is used to display a particular item in a TreeView object.

The argument to ShowItem is a single item as follows:

[1] Item number Integer.

Item number specifies the index of the item concerned.

In order to display the requested item, the parent item (if any) will be opened and the
object will be scrolled if necessary.

ShowProperties Method 560
Applies To: OCXClass

Description

This method is used to display the PropertySheet for an instance of an OLE Control.
The user may then modify some or all of the properties of the control by changing
values in the property sheet. This facility is intended to be used in the context of a
GUI design tool but may also be useful in certain end-user applications.

The ShowProperties method is niladic.

ShowSession Property
Applies To: OLEServer

Description

This property specifies whether or not the APL Session window is displayed when an
OLEServer object is started by an OLE client.

Its default value is 0 (hide Session).

Note that if RunMode is 'MultiUse', you may not in any way access the
instances of the object that are being controlled by the client applications, even if
only a single client is connected.

Chapter 2: A-Z Reference 500

ShowSIP Method 25
Applies To: ActiveXControl, Animation, Button, ButtonEdit, Calendar,

ColorButton, Combo, ComboEx, CoolBar, DateTimePicker, Edit,
Form, Grid, Group, Label, List, ListView, MDIClient, ProgressBar,
PropertyPage, RichEdit, Root, Scroll, SM, Spinner, Static,
StatusBar, SubForm, TabBar, TabControl, ToolBar, ToolControl,
TrackBar, TreeView, UpDown

Description

ShowSIP applies only to PocketAPL.. In versions of Dyalog APL for other platforms,
it has no effect.

This method displays and hides the Input Panel.

The argument to ShowSIP is 1 (display the Input Panel) or 0 (hide the Input Panel).

The argument to ShowSIP is 0 or 1 as follows :

[1] Mode
Boolean
0 = hide the Input Panel.
1 = display the Input Panel

The result of ShowSIP is 1 if the Input Panel was previously displayed, or 0 if it was
previously hidden.

ShowThumb Property
Applies To: TrackBar

Description

The ShowThumb property specifies whether or not the thumb in a TrackBar object is
visible. It is boolean with a default value of 1 and it may be toggled on and off using
⎕WS.

Chapter 2: A-Z Reference 501

SingleClickExpand Property
Applies To: TreeView

Description

The SingleClickExpand property specifies whether or not an item in a TreeView con-
trol is expanded when the user selects the item.

SingleClickExpand is a single number with the value 0 (the user must select the
expand icon to cause the item to expand) or 1 (the item is expanded when the text of
the item is selected); the default is 0.

SIPMode Property
Applies To: Form

Description

SIPMode applies only to PocketAPL. In versions of Dyalog APL for other plat-
forms, it has no effect.

This is a Boolean property that specifies the behaviour of the Input Panel with
respect to the Pocket APL GUI.

If SIPMode is 1, the Input Panel is automatically displayed when a GUI control that
may receive character input (e.g. an Edit object) receives the input focus. The Input
Panel is automatically hidden when the input focus moves to a control that does not
receive character input.

If SIPMode is 0 (the default), the display of the Input Panel is not handled auto-
matically, but may be controlled using the ShowSIP method.

Note that the user may display and hide the Input Panel manually, regardless of the
value of SIPMode.

Chapter 2: A-Z Reference 502

SIPResize Property
Applies To: Form

Description

SIPResize applies only to PocketAPL. In versions of Dyalog APL for other plat-
forms, it has no effect.

This is a Boolean property that specifies the behaviour of a Form when the Input
Panel is raised or lowered.

If SIPResize is 1 (the default), the Form generates a Configure event when the Input
Panel is raised or lowered. Unless disabled or modified by a callback function, the
Form is automatically resized to occupy the entire space above the Input Panel.

If SIPResize is 0, the Form does not generate a Configure event when the Input Panel
is raised or lowered. This means that, at times, the lower part of the Formmay be
obscured by the Input Panel.

Size Property
Applies To: ActiveXControl, Animation, Bitmap, Button, ButtonEdit, Calendar,

ColorButton, Combo, ComboEx, CoolBand, CoolBar,
DateTimePicker, Edit, Ellipse, Font, Form, Grid, Group, Icon,
Image, ImageList, Label, List, ListView, Locator, Marker,
MDIClient, Metafile, ProgressBar, PropertyPage, PropertySheet,
Rect, RichEdit, Root, Scroll, SM, Spinner, Splitter, Static,
StatusBar, StatusField, SubForm, TabBar, TabBtn, TabButton,
TabControl, ToolBar, ToolButton, ToolControl, TrackBar,
TreeView, UpDown

Description

This is a 2-element numeric vector specifying the height and width of the object.

For the Bitmap object, Size is set and reported in pixels. Setting the Size of a Bitmap
causes it to be scaled (up or down).

For all other objects, Size is reported and set in units defined by the Coord property
and, if Coord is 'User', the XRange and YRange properties of the object's parent.

For the Root object, if Coord is 'Prop' the value of Size is (100,100). If Coord is
'Pixel' the value of Size reports the number of pixels on the screen.

Chapter 2: A-Z Reference 503

For a Form or SubForm, the Size property defines the area within the object, and
excludes its title bar, menu bar and border if these are present.

For a Combo object with a "drop-down" list, the first element of Size (height) is
ignored. The height of the edit field is determined by the height of the font, while the
size of the list box is determined by the Rows property.

Otherwise the Size property defines the total size of the object, including borders,
edges etc.

When specifying Size, you can set the height or width to a default value (⎕WC) or
leave it unchanged (⎕WS) by giving the corresponding element a value of ⍬.

Sizeable Property
Applies To: Animation, Button, ButtonEdit, Calendar, ColorButton, Combo,

ComboEx, DateTimePicker, Edit, Form, Grid, Group, Label, List,
ListView, Locator, ProgressBar, RichEdit, Scroll, SM, Spinner,
Static, StatusBar, StatusField, SubForm, TabBar, ToolBar, TrackBar,
TreeView, UpDown

Description

This property determines whether or not an object can be directly resized by the user
once it has been created by ⎕WC.

It is a single number with the value 0 (the object cannot be resized by the user) or 1
(the object may be resized by the user). The default is 1.

For a Form or SubForm, the Sizeable property may only be set by ⎕WC and cannot sub-
sequently be altered using ⎕WS. An attempt to do so generates a NONCE ERROR. For
a Form, the default value is 1 and the Form occupies a standard resizeable window
with a border. Note that the value of Sizeable is independent of the values of the Max-
Button and MinButton properties, so that a Form with MaxButton 1 can be max-
imised even though its Sizeable property is 0.

For other objects, the default value of the Sizeable property is 0. However, setting it
to 1 (which may be done dynamically using ⎕WS) allows the user to resize it with the
mouse.

In all these cases, when the user resizes an object, the object will generate a Con-
figure (31) event.

Sizeable also applies to the Locator object. In this case, a value of 1 implies "rub-
berbanding" and a value of 0 means "no rubberbanding". See Locator object for fur-
ther details.

Chapter 2: A-Z Reference 504

SM Object
Purpose: Defines a window for ⎕SM/⎕SR.

Parents Form, Group, PropertyPage, SubForm, ToolBar, ToolControl

Children Cursor, Timer

Properties Type, Posn, Size, Coord, Border, Visible, Event, Sizeable,
Dragable, BCol, Picture, CursorObj, AutoConf, Data, Attach,
EdgeStyle, Handle, Hint, HintObj, Tip, TipObj, AcceptFiles,
KeepOnClose, Redraw, TabIndex, MethodList, ChildList,
EventList, PropList

Methods Detach, GetTextSize, Animate, GetFocus, ShowSIP

Events Close, Create, MouseDown, MouseUp, MouseDblClick,
MouseEnter, MouseLeave, Configure, Help, DragDrop

Description

This object defines a window for ⎕SM/⎕SR and allows you to combine the func-
tionality of ⎕SM/⎕SR with the "windows" GUI. For example, you can define a Form
with a MenuBar at the top and a ⎕SM window beneath it, with perhaps some Buttons
alongside.

To allow the user to interact with both ⎕SM and other top-level objects, you must
specify the names of these objects in the right argument of ⎕SR. Thus the statement :

CTX ← KEYS CTX ⎕SR 1 2 3 'Form1'

allows the user to interact with fields (rows) 1-3 of ⎕SMandwith the object
'Form1' and its children. Callback functions associated with events in 'Form1'
will be executed automatically by ⎕SR. If an enabled event without a callback
occurs, the event will be placed on ⎕DQ's internal queue and ⎕SR will terminate. The
nature of the termination (i.e. that it was caused by an event in an object) is reported
by the value 131072 (2*17) in the fourth element of ⎕SR's result. The specific event
(Configure, MouseUp, etc.) is however not reported. It is therefore generally pref-
erable to use callbacks.

The Posn, Size and Coord properties allow you to specify the position and size of the
window occupied by ⎕SM within its parent Form. Note however that the ⎕SM win-
dow will automatically be sized to be an exact number of characters in height and
width which will be reported in ⎕SD.

Chapter 2: A-Z Reference 505

The Border property may be used to specify a border around the outside of the ⎕SM
window. It is a number with the value 0 (no border) or 1 (1 pixel border). The default
is 0. The EdgeStyle property may be used to give the object a 3-dimensional appear-
ance. Its default value is 'Recess'. The area within the SM object that is defined
by ⎕SM is necessarily a multiple of the character size. The region between this area
and the outer edges of the object is coloured by the background colour specified by
BCol, or may be filled with a bitmap specified by Picture.

If the user resizes the Form which contains the SM object, the SM object will gen-
erate a Configure event if enabled. If the Configure event is not enabled, ⎕SR will ter-
minate with a RESIZE error which can be trapped using ⎕TRAP. Either method can
be used to reformat ⎕SM as appropriate.

The MouseDown event can be used to bring up a pop-up menu. Note however that
mouse events are not reported over ⎕SM fields because ⎕SR uses these to position the
cursor.

The illustration shown below was produced as follows :

'TEST' ⎕WC 'Form' 'SM Object' (60 10)(40 50)
'TEST.MB' ⎕WC 'MenuBar'
'TEST.MB.F' ⎕WC 'Menu' '&File'
'TEST.MB.O' ⎕WC 'Menu' '&Options'
'TEST.B1' ⎕WC 'Button' '&OK' (84 2)
'TEST.B2' ⎕WC 'Button' '&Cancel' (84 78)
'TEST.S' ⎕WC 'SM'(2 2)(80 96)('BCol'192 192 192)
⎕SM←↑('The answer is' 5 10)(42 5 30)

Chapter 2: A-Z Reference 506

SocketNumber Property
Applies To: TCPSocket

Description

The SocketNumber property is an integer whose value is the Window handle of the
socket attached to the TCPSocket object and is generally a read-only property.

The only time that SocketNumber may be specified is when a server replicates
(clones) a listening socket to which a client has just connected.

SocketType Property
Applies To: TCPSocket

Description

The SocketType property is a character vector that specifies the type of the TCP/IP
socket. This is either Stream (which is the default), or UDP.

SocketType must be defined when the object is created and may not be set or
changed using ⎕WS.

For two Dyalog APL applications to communicate, their TCPSocket objects must
have the same SocketType.

SortItems Property
Applies To: List

Description

The SortItems property specifies whether or not the items in a List object are sorted.

It is Boolean with a default value of 0. If SortItems is 1, the items are automatically
sorted in alphabetical order and the object provides word recognition capabilities for
selecting an item from the keyboard.

Note that the value of the Items property reflects the order of the items displayed in
the List object rather than the order in the array that was used to assign it.

This property may only be initialised when the object is created and cannot sub-
sequently be changed.

Chapter 2: A-Z Reference 507

Spin Event 420
Applies To: Spinner, UpDown

Description

If enabled, this event is generated when the user clicks one of the spin buttons in a
Spinner object. The event is reported before the value of the Thumb property has
been updated. You may disable the operation of the spin buttons by disabling this
event. You may selectively prevent the user selecting a particular value by returning
0 from a callback function. You may also return a modified event message as a result
in order to set the Thumb property to a different value.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 4-element vector as follows :

[1] Object ref or character vector

[2] Event 'Spin' or 420

[3] Thumb value
Integer. The new value of the Thumb property
resulting from the user pressing one of the spin
buttons.

[4] Adjustment Integer. The amount by which the new value of the
Thumb differs from its previous value.

Chapter 2: A-Z Reference 508

Spinner Object
Purpose: The Spinner object allows the user to enter a value, using an

UpDown object to adjust it as required.

Parents ActiveXControl, CoolBand, Form, Grid, Group, PropertyPage,
SubForm, ToolBar, ToolControl

Children Circle, Ellipse, Font, Marker, Poly, Rect, Text, Timer

Properties Type, Items, Text, Posn, Size, Coord, Align, Border, Justify, Active,
Visible, Event, Thumb, Step, Wrap, Limits, Sizeable, Dragable,
FontObj, FCol, BCol, CursorObj, AutoConf, Data, Attach,
EdgeStyle, Handle, Hint, HintObj, Tip, TipObj, FieldType,
MaxLength, Decimals, Password, ValidIfEmpty, ReadOnly,
FormatString, Changed, Value, Translate, Accelerator, AcceptFiles,
KeepOnClose, Redraw, TabIndex, MethodList, ChildList,
EventList, PropList

Methods Detach, ChooseFont, GetTextSize, Animate, GetFocus, ShowSIP

Events Close, Create, FontOK, FontCancel, DragDrop, Configure,
ContextMenu, DropFiles, DropObjects, Expose, Help, KeyPress,
GotFocus, LostFocus, MouseDown, MouseUp, MouseMove,
MouseDblClick, MouseEnter, MouseLeave, MouseWheel, Spin,
SetSpinnerText, Select, BadValue, KeyError, Change

Description

The Spinner object is a special Dyalog APL composite object that consists of an edit
field and a pair of spin buttons. The user may enter a value by typing in the edit field
and may adjust the value with the spin buttons. The Spinner may cycle through a pre-
defined set of values specified by the Items property or through a range of values spec-
ified by the Limits property. The FieldType property supports all of the standard data
types, i.e. Char, Numeric, LongNumeric, Currency, Date, LongDate and Time.

The Limits property is a 2-element numeric vector that specifies the minimum and
maximum value of the object. The Step property specifies the amount by which the
value is incremented or decremented by the spin buttons. The current value in the
object is defined by the Thumb and Value properties, which are usually identical. If
ReadOnly is 0, the user may type a value into the edit field which will be validated
and converted according to the FieldType. In this case, the Value and the Thumb
properties may be different.

Chapter 2: A-Z Reference 509

An alternative way to use the Spinner object is to specify the Items property. This
defines a discrete set of values through which the user may cycle, and the object
behaves rather like a Combo without a drop-down list. In this case, the Limits prop-
erty is automatically set to (1,⊃⍴Items), Thumb refers to the index into the list of
Items, and Step specifies the amount by which this index is updated by the spin but-
tons. For example, if you set Step to 3, the spin buttons would display every third
item. The Items property may be a character matrix, a vector of character vectors, or a
numeric vector and will be formatted according to the FieldType. For example, if you
wanted the user to select one of a set of specific dates, you would set the FieldType
to Date or LongDate and the Items property to the day numbers (since 1 January
1900) corresponding to the dates you require. The ReadOnly property specifies
whether or not the user may enter data into the edit field. A value typed in by the user
will be converted and formatted according to the FieldType but need not correspond
to a value in Items.

In operation, the value in the Spinner is adjusted by the Step each time one of the
spin buttons is clicked. If the user holds a spin button down, the value is adjusted at
the rate defined for the keyboard repeat rate. Furthermore, the size of each adjustment
is increased according to the length of time the button stays depressed. After 1 sec-
ond, the amount is increased to (2 × Step). after 2 seconds, to (4 × Step),
after 3 seconds to (8 × Step) and so forth until the amount of adjustment exceeds
one quarter of the range (Limits[2]⍎Limits[1]).

When the value in the spinner reaches its top or bottom limit, it will wrap around to
the opposite limit if the value of the Wrap property is 1 (the default). Otherwise it
will stick.

The MaxLength property defines the maximum number of characters that the user
may type into the edit field. The Decimals property specifies the number of decimal
places to which a numeric value is displayed and applies only if the FieldType is
Numeric or LongNumeric.

The Spinner generates two special events, Spin and SetSpinnerText. The Spin event
is generated each time the value of the Thumb is about to be updated and reports the
new value and the difference between it and the current value. You may prevent the
Thumb from being updated by returning 0 from a callback function, or you may alter
the new value of the Thumb by returning a modified message. The SetSpinnerText
event is generated after the Thumb has been reset but before the edit field has been
updated. It reports the new value of the Thumb and the text that is about to be written
into the edit field. By returning a modified event message from a callback, this event
allows your application to respond dynamically to the spin buttons and to control
the text in the edit field directly.

Like an Edit object, the Spinner has a Changed property and generates a Change
event when loses the focus after the value of its Text and/or Thumb property has been
altered.

Chapter 2: A-Z Reference 510

If FieldType is Numeric, LongNumeric, Currency, Date, LongDate or Time, the
Spinner will generate a BadValue event when it loses the focus if the text in the edit
field (i.e. the Text property) is in conflict with the FieldType property and cannot be
converted to an appropriate number, or is outside the range specified by the Limits
property. If the edit field is empty, a BadValue event will be generated if Val-
idIfEmpty is 0, but not if it is set to 1.

SplitObj1 Property
Applies To: Splitter

Description

The SplitObj1 property specifies the name of, or ref to, one ot up to two objects man-
aged by a Splitter object. The object must be one of the following types:

Button Calendar Combo Edit Grid Group

Label List ListView MDIClient ProgressBar RichEdit

Scroll Spinner Static StatusBar SubForm TabBar

TabControl ToolBar TrackBar TreeView UpDown

If the Style property of the Splitter is 'Vert', the object specified by SplitObj1 is
positioned at (0 0) and sized to occupy the space in its parent to the left of the
Splitter, with the Splitter itself attached to its right edge.

If the Style property of the Splitter is 'Horz', the object specified by SplitObj1 is
positioned at (0 0) and sized to occupy the space in its parent above the Splitter, with
the Splitter itself attached to its bottom edge.

If SplitObj1 is empty, the Splitter manages the single object specified by SplitObj2
and the space to the left or above the Splitter is empty or controlled by another
Splitter.

Chapter 2: A-Z Reference 511

SplitObj2 Property
Applies To: Splitter

Description

The SplitObj2 property specifies the name of, or ref to, one of up to two objects man-
aged by a Splitter object. The object must be one of the following types:

Button Calendar Combo Edit Grid Group

Label List ListView MDIClient ProgressBar RichEdit

Scroll Spinner Static StatusBar SubForm TabBar

TabControl ToolBar TrackBar TreeView UpDown

If the Style property of the Splitter is 'Vert', the object specified by SplitObj2 is
initially positioned at (0 x), where x is half the width of the parent plus the Size of
the Splitter, and sized to occupy the space in its parent to the right of the Splitter,
with the Splitter itself attached to its left edge.

If the Style property of the Splitter is 'Horz', the object specified by SplitObj2 is
initially positioned at (y 0), where y is half the height of the parent plus the Size of
the Splitter, and sized to occupy the space in its parent below the Splitter, with the
Splitter itself attached to its top edge.

If SplitObj2 is empty, the Splitter manages the single object specified by SplitObj1
and the space to the right or below the Splitter is empty or controlled by a second
Splitter.

Chapter 2: A-Z Reference 512

Splitter Object
Purpose: The Splitter object divides a container into resizable panes.

Parents ActiveXControl, Form, Group, PropertyPage, SubForm

Children Timer

Properties Type, SplitObj1, SplitObj2, Posn, Size, Style, Coord, Align,
Active, Visible, Event, BCol, CursorObj, Data, KeepOnClose,
MethodList, ChildList, EventList, PropList

Methods Detach

Events Close, Create, StartSplit, Splitting, EndSplit

Description

The Splitter divides the client area of a Form or SubForm into resizable panes. Each
pane created this way may be empty or be occupied by a single object. If the object
in a pane is itself a container object, such as a SubForm, it may have a number of
other controls within it.

A single Splitter may manage the geometry of 0, 1 or 2 other objects, which, together
with the Splittter itself, share the same parent. The two objects are named by the Spli-
tObj1 and SplitObj2 properties respectively.

A Splitter may manage objects of the following types:

Button Calendar Combo Edit Grid Group

Label List ListView MDIClient ProgressBar RichEdit

Scroll Spinner Static StatusBar SubForm TabBar

TabControl ToolBar TrackBar TreeView UpDown

If Style is 'Vert' (the default), the Splitter is drawn vertically in its parent with the
first object (SplitObj1) positioned to its left, and the second object (SplitObj2) to its
right.

'F'⎕WC'Form' 'Vertical Splitter'('Size' 25 25)
'F.E1'⎕WC'Edit'(10 6⍴'Edit 1')('Style' 'Multi')
'F.E2'⎕WC'Edit'(10 6⍴'Edit 2')('Style' 'Multi')
'F.S'⎕WC'Splitter' 'F.E1' 'F.E2'

Chapter 2: A-Z Reference 513

If Style is 'Horz', the Splitter is drawn horizontally in its parent with the first
object (SplitObj1) positioned above, and the second object (SplitObj2) below.

'F'⎕WC'Form' 'Horizontal Splitter'('Size' 25 25)
'F.E1'⎕WC'Edit'(5 6⍴'Edit 1')('Style' 'Multi')
'F.E2'⎕WC'Edit'(5 6⍴'Edit 2')('Style' 'Multi')
'F.S'⎕WC'Splitter' 'F.E1' 'F.E2'('Style' 'Horz')

The Style property must be set when the object is created with ⎕WC and may not sub-
sequently be changed using ⎕WS.

The Posn and Size properties are partially read-only, in that only one dimension of
the value may be specified. If Style is 'Vert', you may specify the x-coordinate and
the width of the Splitter, but you may not specify its y- coordinate nor its height. If
Style is 'Horz', you may specify the y-coordinate and the width of the Splitter, but
you may not specify its x-coordinate nor its length.

When the user positions the mouse pointer directly over the Splitter object, the cursor
changes (by default) to a double-headed arrow (direction in accordance with Style).
The user may now depress the left mouse button and drag the Splitter to a new posi-
tion, resizing the objects named by SplitObj1 and SplitObj2 in the process.

Chapter 2: A-Z Reference 514

You can select a different cursor using the CursorObj property. Note that setting the
CursorObj property to 0 selects the default cursor, which is the appropriate double-
headed arrow.

When the user depresses the mouse button, the Splitter generates a StartSplit event.
When the user releases the mouse button, the Splitter generates an EndSplit event. If
full-drag is in effect, the Splitter also reports Splitting events as it is dragged. All
these events report the new or current position of the Splitter object and are provided
for information only.

Note that the objects named by SplitObj1 and SplitObj2 and any sub-objects they
contain will generate Configure events when they are resized by the Splitter.

Alignment
The Align property specifies how a Splitter behaves when its parent is resized and
may be 'None', 'Left', 'Right', 'Top' or 'Bottom'.

If Align is 'None', the Splitter moves as its parent is resized, so that it divides its par-
ent in the same proportions as before. This is the default.

Any other value of Align attaches the Splitter to the corresponding edge of its parent.
For example, if Align is 'Left', the width of the object to the left of the Splitter
remains fixed when its parent is resized horizontally by the user.

Like the Style property, Align may be set only when the object is created with ⎕WC
and may not subsequently be changed using ⎕WS.

Using Multiple Splitters
If you want to divide a Form into more than 2 resizable panes, there are two possible
approaches, each with its own different characteristics.

The first approach is a hierarchical one using SubForms. This example shows how
you can create a Form containing three resizable Edit objects.

First, you create an Edit, a SubForm, and a Splitter as children of the Form, using the
Splitter to divide the Form into two panes, one for the Edit and the other for the Sub-
Form. Next, you create two Edit objects and a Splitter as children of the SubForm,
using the second Splitter to divide the SubForm into two. You can continue with this
approach to any reasonable depth.

Notice that, by default, when the first Splitter is shifted to the left, both panes in the
SubForm expand equally.

Chapter 2: A-Z Reference 515

'F'⎕WC'Form' 'Multiple Splitters: hierarchical using
SubForms'('Size' 25 50)
'F.E1'⎕WC'Edit'(10 6⍴'Edit 1')('Style' 'Multi')
'F.SF1'⎕WC'SubForm'('EdgeStyle' 'Default')
'F.S1'⎕WC'Splitter' 'F.E1' 'F.SF1'
'F.SF1.E1'⎕WC'Edit'(10 6⍴'Edit 2')('Style' 'Multi')
'F.SF1.E2'⎕WC'Edit'(10 6⍴'Edit 3')('Style' 'Multi')
'F.SF1.S1'⎕WC'Splitter' 'F.SF1.E1' 'F.SF1.E2'

After dragging the first Splitter to the left.

Chapter 2: A-Z Reference 516

The second approach is to create multiple Splitters at the same level, i.e. owned by
the same parent.

In this case, the third Edit object F.E3 is unaffected by movement of the leftmost
Splitter F.S1. Note also, that the first Splitter F.S1may not be dragged further right
than the second Splitter F.S2.

'F'⎕WC'Form' 'Multiple Splitters: non-hierarchical'
('Size' 25 50)
'F.E1'⎕WC'Edit'(10 6⍴'Edit 1')('Style' 'Multi')
'F.E2'⎕WC'Edit'(10 6⍴'Edit 2')('Style' 'Multi')
'F.E3'⎕WC'Edit'(10 6⍴'Edit 3')('Style' 'Multi')
'F.S1'⎕WC'Splitter' 'F.E1'
'F.S2'⎕WC'Splitter' 'F.E2' 'F.E3'

After dragging the first Splitter to the left.

Chapter 2: A-Z Reference 517

Using the non-hierarchical approach, horizontal and vertical Splitters may be com-
bined in interesting ways. This can also be achieved using nested SubForms, but at
the expense of a complex object hierarchy.

Notice that in this example, with the exception of the last Splitter F.S4, it is nec-
essary only to specify the SplitObj1 property for each of the Splitters. The reason is
that the first four Splitters only manage one object directly. For example, the object
to the right of F.S1 is in fact a horizontal Splitter F.S2. Dragging F.S1 changes
the length of F.S2 which in turn changes the width of F.E2. and F.E3.

'F'⎕WC'Form' 'Combining Horizontal and Vertical
Splitters'
'F.E1'⎕WC'Edit'(20 6⍴'Edit 1')('Style' 'Multi')
'F.E2'⎕WC'Edit'(10 6⍴'Edit 2')('Style' 'Multi')
'F.E3'⎕WC'Edit'(10 6⍴'Edit 3')('Style' 'Multi')
'F.E4'⎕WC'Edit'(5 6⍴'Edit 4')('Style' 'Multi')
'F.E5'⎕WC'Edit'(5 6⍴'Edit 5')('Style' 'Multi')

'F.S1'⎕WC'Splitter' 'F.E1'('Style' 'Vert')
'F.S2'⎕WC'Splitter' 'F.E2'('Style' 'Horz')
'F.S3'⎕WC'Splitter' 'F.E3'('Style' 'Vert')
'F.S4'⎕WC'Splitter' 'F.E4' 'F.E5'('Style' 'Horz')

Chapter 2: A-Z Reference 518

Colliding Splitters
If you have two or more vertical Splitters or two or more horizontal Splitters in the
same parent object, it is possible for the user to make the Splitters collide. This can
occur by dragging one of the Splitters into the other, or, unless both Splitters have
Align set to 'None', by shrinking the parent.

When Splitters collide, the object being dragged by the user (a Splitter or a border of
the parent) takes precedence over the setting of Align, and temporarily pushes other
Splitters along in its direction of travel. If and when the operation is reversed, the
other Splitters are pulled back to their original positions.

Splitting Event 281
Applies To: Splitter

Description

If enabled, this event is reported while a Splitter object is being dragged, between a
StartSplit and an EndSplit. This event is only reported if full-drag is enabled.

This event is reported for information alone. You may not disable or nullify the event
by setting the action code for the event to ¯1 or by returning 0 from a callback func-
tion.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 6-element vector as follows :

[1] Object ref or character vector

[2] Event 'Splitting' or 281

[3] Y y-position of top left corner

[4] X x-position of top left corner

[5] H height of the Splitter

[6] W width of the Splitter

See also StartSplit, EndSplit.

Chapter 2: A-Z Reference 519

Start Property
Applies To: Circle, Ellipse

Description

This property specifies one or more start-angles for an arc, pie-slice, or chord of a cir-
cle or ellipse. It may be used in conjunction with End which specifies end angles.
Angles are measured counter-clockwise from the x-axis at the centre of the object.

If a single arc is being drawn, Start is a single number that specifies the start angle of
the arc in radians (0 ⍎> ○2). If multiple arcs are being drawn, Start is either a sin-
gle number as before (the start angle for several concentric arcs) or a numeric vector
with one element per arc.

If End is not specified, the default value of Start is 0. Otherwise, the default value of
Start is (0,¯1↓+\End).

StartIn Property
Applies To: BrowseBox

Description

The StartIn property is a character string that specifies the start point and root for a
BrowseBox object.

Only the specified folder and its subfolders appear in the dialog box. The user cannot
browse higher in the folder architecture than this folder.

The default value for StartIn is an empty vector which means that the root of the
browse dialog is the desktop.

Chapter 2: A-Z Reference 520

StartSplit Event 280
Applies To: Splitter

Description

If enabled, this event is reported when the user depresses the left mouse button over a
Splitter object to signify the beginning of a drag operation.

This event is reported for information alone. You may not disable or nullify the event
by setting the action code for the event to ¯1 or by returning 0 from a callback func-
tion.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 2-element vector as follows :

[1] Object ref or character vector

[2] Event 'StartSplit' or 280

See also EndSplit, Splitting.

State Property
Applies To: Button, Form, SubForm, TabButton, ToolButton

Description

This property determines the state of a Button, TabButton, ToolButton, Form, or Sub-
Form. It is a single number with the value 0 (the default), 1, or 2 (Form and SubForm).

If the Style property is 'Push', a State of 0 means that the pushbutton is displayed
normally (out). If its State is 1, the pushbutton is displayed depressed (in).

If the Style property is 'Radio' or 'Check', 0 means "not selected" and 1 means
"selected". Note that only one of a group of buttons with Style'Radio' that share
the same parent may have State 1. Setting State to 1 automatically deselects all the
others in the group.

For a Form or SubForm, a value of State of 0 means that the Form is currently dis-
played in its "normal" state. 1 means that the Form is currently minimised (displayed
as an icon). The value 2 indicates that the Form is maximised and displayed full-
screen. The State of a Form can be changed using ⎕WS.

Chapter 2: A-Z Reference 521

StateChange Event 35
Applies To: Form, SubForm

Description

This event is generated by a Form or SubForm when the user attempts to change the
State of a Form, by minimising it, maximising it, or restoring it from a minimised or
maximised state. The event is reported before the window changes state. You may
prevent the state change by disabling the event (action code ¯1) or by returning a 0
result from an attached callback function.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 3-element vector as follows :

[1] Object ref or character vector

[2] Event 'StateChange' or 35

[3] Window state
0 (about to be restored)
1 (about to be minimised)
2 (about to be maximised)

Chapter 2: A-Z Reference 522

Static Object
Purpose: This object is primarily used to display graphics in a sub-window.

Parents ActiveXControl, CoolBand, Form, Group, PropertyPage, SubForm,
ToolBar, ToolControl

Children Circle, Cursor, Ellipse, Font, Image, Locator, Marker, Metafile,
Poly, Rect, Text, Timer

Properties Type, Posn, Size, Style, Coord, Border, Active, Visible, Event,
Sizeable, Dragable, FontObj, FCol, BCol, Picture, CursorObj,
AutoConf, YRange, XRange, Data, Attach, TextSize, EdgeStyle,
Handle, Hint, HintObj, Tip, TipObj, Translate, Accelerator,
AcceptFiles, KeepOnClose, Redraw, TabIndex, MethodList,
ChildList, EventList, PropList

Methods Detach, GetTextSize, Animate, GetFocus, ShowSIP, ChooseFont

Events Close, Create, DragDrop, Configure, ContextMenu, DropFiles,
DropObjects, Expose, Help, MouseDown, MouseUp, MouseMove,
MouseDblClick, MouseEnter, MouseLeave, MouseWheel, FontOK,
FontCancel, Select

Description

The overall appearance of an empty Static object is controlled by the value of its
Style property which may be one of the following character vectors :

'BlackFrame' 'BlackBox'

'GreyFrame' or 'GrayFrame' 'GreyBox' or 'GrayBox'

'WhiteFrame' 'WhiteBox'

Note that the colours implied by the Style are not "hard-coded" but are actually
defined by the current Windows colour scheme as follows :

Black Window Border Colour

Grey/Gray Desktop Colour

White Window Background Colour

If the background colour of the Form is also set to the Window Background Colour,
it follows that the Styles 'WhiteFrame' and 'WhiteBox'make the Static itself
invisible (against the background), although the contents of the Static will show.
This makes the Static appear like an invisible clipping window.

Chapter 2: A-Z Reference 523

StatusBar Object
Purpose: This object is used to manage StatusField objects which display

information for the user.

Parents ActiveXControl, CoolBand, Form, SubForm

Children Bitmap, BrowseBox, Circle, Cursor, Ellipse, FileBox, Font, Icon,
Image, Marker, Poly, ProgressBar, Rect, StatusField, Text, Timer

Properties Type, Posn, Size, Coord, Align, Border, Active, Visible, Event,
VScroll, HScroll, Sizeable, FontObj, FCol, BCol, Picture,
CursorObj, AutoConf, YRange, XRange, Data, Attach, TextSize,
EdgeStyle, Handle, Hint, HintObj, Tip, TipObj, Translate,
Accelerator, AcceptFiles, KeepOnClose, Redraw, TabIndex,
MethodList, ChildList, EventList, PropList

Methods Detach, GetTextSize, Animate, GetFocus, ShowSIP, ChooseFont

Events Close, Create, FontOK, FontCancel, DragDrop, Configure,
ContextMenu, DropFiles, DropObjects, Expose, Help,
MouseDown, MouseUp, MouseMove, MouseDblClick,
MouseEnter, MouseLeave, MouseWheel, Select

Description

The StatusBar is a container object that manages StatusFields. StatusField objects dis-
play textual information and are typically used for help messages and for monitoring
the status of an application. They can also be used to automatically report the status
of the Caps Lock, Num Lock , Scroll Lock, and Insert keys.

'TEST'⎕WC'Form' 'StatusBar' ('EdgeStyle' 'Default')
'TEST.SB'⎕WC'StatusBar'
'TEST.SB.S1'⎕WC'StatusField' 'Field1:' 'text1'
'TEST.SB.S2'⎕WC'StatusField' 'Field2:' 'text2'
'TEST.SB.S3'⎕WC'StatusField' 'Field3:' 'text3'

Chapter 2: A-Z Reference 524

The Align property determines to which side of the parent Form or SubForm the Stat-
usBar is attached. By default, a StatusBar is positioned along the lower edge of the
Form (Align'Bottom') and is 24 pixels high. Using the Align, Posn and Size prop-
erties you may create StatusBars in different positions and with differing sizes if you
wish. Notice that the Align property controls how the StatusBar reacts to its parent
Form being resized. If Align is 'Top' or Bottom, the StatusBar remains fixed in
height but stretches and shrinks sideways with the Form. If Align is 'Left' or
'Right', the StatusBar remains fixed in width and stretches and shrinks vertically
with the Form.

By default a StatusBar has a Button Face colour background and the value of its
EdgeStyle property is 'Default'. This gives it the appearance shown above.

Unless you specify the position and size of its children, a StatusBar automatically
manages their geometry. The first StatusField is positioned just inside its top left
corner. If Align is 'Top' or 'Bottom', the next StatusField is positioned alongside
the first but with a small gap between them. Subsequent StatusFields are added in a
similar fashion. If Align is 'Left' or 'Right', the second and subsequent Stat-
usFields are added below the first with a similar gap between them. In either case you
can position and size the StatusFields explicitly if you wish.

If you attempt to add a StatusField that would extend beyond the right edge
(Align'Top' or 'Bottom') or bottom edge (Align'Left' or 'Right') the
behaviour depends upon the value of HScroll or VScroll. If HScroll is 0 (the default)
and Align is 'Top' or 'Bottom', the StatusField is added below the first one,
thereby starting a new row. If VScroll is 0 (the default) and Align is 'Left' or
'Right', it is added to the right of the first one thereby starting a new column. If
HScroll or VScroll is ¯1 or ¯2, the new StatusField is simply positioned in the same
row or column and may be scrolled into view using a mini scrollbar. A value for
HScroll or VScroll of ¯1 causes the mini scrollbar to be permanently present in the
Scroll Bar. A value of ¯2 causes it to appear only when required.

VScroll and HScroll may only be set when the object is created and may not sub-
sequently be changed.

Chapter 2: A-Z Reference 525

StatusField Object
Purpose: This object is used to display information for the user.

Parents StatusBar

Children Menu, Timer

Properties Type, Caption, Text, Posn, Size, Style, Coord, Align, Border,
Visible, Event, Sizeable, Dragable, FontObj, FCol, BCol, Picture,
AutoConf, Data, Attach, EdgeStyle, Translate, Accelerator,
KeepOnClose, MethodList, ChildList, EventList, PropList

Methods Detach

Events Close, Create, DropObjects, Select, MouseDown, MouseUp,
MouseMove, MouseDblClick

Description

The StatusField object provides an area for displaying context sensitive help mes-
sages, keyboard status, and other application dependant information.

By default a StatusField is a recessed rectangle in which information is displayed. It
has a Caption and a Text property, which by default are empty, but either or both of
which can be used to present information. The Caption is left justified in the field
and the Text is displayed immediately to its right. Typically, you would use the Cap-
tion property as a title to describe the information that the StatusField displays, and
the Text property to show its current value. However, you are not obliged to use both
of them and you can achieve most effects with just one.

Note that when the StatusField is used to display hints it is its Text property that is
used.

A StatusField may be used to monitor the status of the keyboard and this is con-
trolled by its Style property. The default value for Style is an empty vector. However,
you can set it to monitor various keyboard states as follows :

CapsLock Monitors state of Caps Lock key

ScrollLock Monitors state of Scroll Lock key

NumLock Monitors state of Num Lock key

KeyMode Monitors the keyboard mode (APL/ASCII)

InsRep Monitors the state of the Insert key

Chapter 2: A-Z Reference 526

In each case, the Text property of the StatusField is used to display the keyboard
status. If Style is CapsLock, ScrollLock or NumLock, the field displays "Caps",
"Num" or "Scroll" if the corresponding mode is selected and is blank if not.

If Style is InsRep, the StatusField displays either "Ins" or "Rep". Initially it always dis-
plays "Ins" and then toggles between "Rep" and "Ins" each time the Insert key is
pressed.

If Style is KeyMode, the StatusField displays the name for the current keyboard mode
which is defined in the input table being used. For the 2-mode tables APL_US.DIN,
APL_UK.DIN etc., the mode name displayed is either "Apl" or "Asc". The unified
tables have no modes so a StatusField with this Style does nothing.

If Style is set to one of the above, you may still use the Caption property to give the
StatusField a title. You may even set the value of the Text property, but be aware that
this value will be reset when the user next presses the key the StatusField is mon-
itoring.

Step Property
Applies To: Form, Locator, ProgressBar, Scroll, Spinner, SubForm, TrackBar,

UpDown

Description

This property determines the size of changes reported when the user clicks a scroll
arrow (small change) or clicks on the body of the scrollbar (large change). The
object's Thumb property increases or decreases by this amount.

For a Scroll object, Step is a 2-element numeric vector whose first element specifies
the value of the "small change" and whose second element specifies the value of the
"large change".

For a Form or SubForm, Step is a 4-element numeric vector. The first two elements
refer to the Form's vertical scrollbar and the second two elements refer to the Form's
horizontal scrollbar.

For the above objects, values of Step must be between 1 and the value of the Range
property.

For a Locator object, Step is a 2-element integer vector (default value 1 1) that spec-
ifies the increments (in pixels) by which the size or position of the Locator changes
in the Y and X directions respectively as the user moves the Locator.

Chapter 2: A-Z Reference 527

Style Property
Applies To: Button, ButtonEdit, Calendar, Combo, ComboEx, DateTimePicker,

Edit, FileBox, Icon, List, ListView, Locator, Marker, MenuItem,
MsgBox, ProgressBar, PropertySheet, Separator, Splitter, Static,
StatusField, TabControl, TCPSocket, ToolButton, ToolControl,
TrackBar

Description

This property determines a particular style of object within the general category of
Type. It is a character vector whose value depends upon the type of object.

For a Button, Style may be 'Push', 'Radio', 'Check', 'Toggle',
'CommandLink' or 'Split'.

'Push' specifies that the button appears and behaves like a pushbutton (sometimes
also called a command button).

'Radio'means that the button is displayed as a small circle accompanied by a
description. When the button is selected, the circle is filled in. In a group of buttons
with Style 'Radio'that share the same parent, only one of themmay be selected.
This style of button is generally known as a "radio-button" or an "option button".

'Check' or 'Toggle'means that the button is displayed as a small box accom-
panied by a description. When the button is selected a cross appears in the box. This
style of button is known as a "check-box".

'CommandLink'means that the button has an icon displayed to the left of its . the
appearance of which is controlled by the Elevated property. Note that this feature
only apples if Native Look and Feel (see page 36) is enabled.

'Split' specifies a 'Push' button with an additional drop-down button, similar
to that provided by a Combo object. Note that this feature only apples if Native Look
and Feel (see page 36) is enabled.

For a Calendar object, The Style property may be either 'Single' (the default) or
'Multi'. If Style is 'Single', the user may select a single date. If Style is
'Multi', the user may select a contiguous range of dates.

Chapter 2: A-Z Reference 528

For a Combo or ComboEx object, Style may be 'Simple''DropEdit'or
'Drop' (the default). 'Simple'specifies a simple combo box in which the asso-
ciated list box is displayed at all times. The other two styles provide list boxes which
"drop down" when the user clicks on a symbol displayed to the right of the Combo's
edit field. A 'DropEdit' Style allows the user to type (anything) in the edit field.

A 'Drop'Style does not and forces the contents of the edit field to be either empty
or one of the choices specified by Items.

For a DateTimePicker, Style may be either 'Combo' (the default) or 'UpDown'.

For an Edit object, Style may be 'Single'or 'Multi'. If Style is 'Single'the
object displays only a single line of text and the user may not enter any more lines. If
the Style is 'Multi' the number of lines displayed is governed by the Rows or Size
property and the user may insert, add or delete lines as desired.

For FileBox, List, and ListView objects, Style may be 'Single'or 'Multi'. If the
Style is 'Single'only one file or item can be selected. If Style is 'Multi', several
files or items can be selected.

For an Icon, Style may be 'Large'(the default) or 'Small' and specifies the size
of the icon (32x32 or 16x16) to be loaded from a file.

For a Locator, Style may be 'Point', 'Rect' (the default), 'Line'or
'Ellipse'. It specifies the shape that is drawn as the user moves the mouse.

For a MenuItem, Style may be 'Check'(the default) or 'Radio'. The latter spec-
ifies that within a contiguous block of such MenuItems, only one may have
Checked set to 1. Setting Checked to 1 on any item in that group automatically sets
Checked to 0 on the others. A radio style MenuItem that is checked has a small radio
dot drawn to the left of its Caption.

For a MsgBox, the Style property determines the type of icon which is displayed in
it. This is a character vector with one of the following values :

'Msg' no icon (the default)

'Info' information message icon

'Query' query (question) icon

'Warn' warning icon

'Error' critical error icon

Chapter 2: A-Z Reference 529

For a Static object, Style defines its appearance, and may be one of:

'BlackFrame' 'BlackBox'

'GreyFrame' or 'GrayFrame' 'GreyBox' or 'GrayBox'

'WhiteFrame' 'WhiteBox'

A StatusField may be used to monitor the state of a key on the keyboard. If so, its
Style property determines the key it monitors and may be one of the following:

CapsLock Monitors state of Caps Lock key

ScrollLock Monitors state of Scroll Lock key

NumLock Monitors state of Num Lock key

KeyMode Monitors the keyboard mode (APL/ASCII)

InsRep Monitors the state of the Insert key

For a Splitter, the Style property specifies the orientation of the Splitter and may be
'Vert' (the default) or 'Horz' .

For a TabControl, the Style property determines the appearance of its
TabButton children, and may be 'Tabs' (the default), 'Buttons' or
'FlatButtons'.

For aTCPSocket, Style is a character vector that specifies the type of data transmitted
or received by the socket; it may be 'Char', 'Raw', or 'APL'. The value APL is
valid only if the SocketType is 'Stream'.

For a ToolButton, the Style property specifies the behaviour of the button and may
be 'Push'(the default), 'Check', 'Radio', 'DropDown', or 'Separator'.

For a ToolControl, the Style property determines the appearance of its
ToolButton children and may be 'Buttons', 'FlatButtons' (the default),
'List' or 'FlatList'.

For a TrackBar, the Style property determines the appearance and behaviour of the
TrackBar and may be 'Standard'(the default) or 'Selection'.

Chapter 2: A-Z Reference 530

SubForm Object
Purpose: This object represents a window that is owned by and constrained

within another Form or an MDIClient.

Parents ActiveXControl, CoolBand, Form, Group, MDIClient,
PropertyPage, SubForm, TabControl, ToolBar, ToolControl

Children Animation, Bitmap, BrowseBox, Button, ButtonEdit, Calendar,
Circle, ColorButton, Combo, ComboEx, Cursor, DateTimePicker,
Edit, Ellipse, FileBox, Font, Form, Grid, Group, Icon, Image,
ImageList, Label, List, ListView, Locator, Marker, MDIClient,
Menu, MenuBar, Metafile, MsgBox, OCXClass, Poly, ProgressBar,
PropertySheet, Rect, RichEdit, Scroll, SM, Spinner, Splitter, Static,
StatusBar, SubForm, TabBar, TabControl, TCPSocket, Text, Timer,
TipField, ToolBar, ToolControl, TrackBar, TreeView, UpDown

Properties Type, Caption, Posn, Size, Coord, State, Border, Active, Visible,
Event, Thumb, Range, Step, VScroll, HScroll, Sizeable, Moveable,
SysMenu, MaxButton, MinButton, HelpButton, FontObj, BCol,
Picture, OnTop, IconObj, CursorObj, AutoConf, YRange, XRange,
Data, Attach, TextSize, EdgeStyle, Handle, Hint, HintObj, Tip,
TipObj, TabObj, Translate, Accelerator, AcceptFiles,
KeepOnClose, Dockable, Docked, DockShowCaption,
DockChildren, UndocksToRoot, Redraw, TabIndex, PageSize,
MethodList, ChildList, EventList, PropList

Methods Detach, ChooseFont, GetTextSize, Animate, GetFocus, ShowSIP

Events Close, Create, FontOK, FontCancel, DragDrop, Configure,
ContextMenu, DropFiles, DropObjects, Expose, Help, KeyPress,
GotFocus, LostFocus, MouseDown, MouseUp, MouseMove,
MouseDblClick, MouseEnter, MouseLeave, MouseWheel,
StateChange, MDIActivate, MDIDeactivate, DockStart,
DockMove, DockRequest, DockAccept, DockEnd, DockCancel,
Select, FrameContextMenu, VScroll, HScroll, VThumbDrag,
HThumbDrag

Description

If the SubForm is the child of a Form, it is by default a simple featureless window that
occupies the entire client area (excluding standard ToolBars, StatusBars and Tab-
Bars) of its parent. The properties that control its appearance, including Sizeable,
Moveable, SysMenu, Border, MaxButton and MinButton, all default to 0. The
EdgeStyle property also defaults to 'None', so the background of the SubForm
defaults to the Window Background colour.

Chapter 2: A-Z Reference 531

If the SubForm is the child of an MDIClient, its default appearance is the same as for
a top-level Form. By default its size is 25% of its parent client area and it is posi-
tioned in the centre of its parent object.

The Posn property specifies the location of the internal top-left corner of the Sub-
Form relative to its parent. If the SubForm has a title bar, border, or a 3-dimensional
shadow, you must allow sufficient space for these components. Similarly, the
Size property specifies the internal size of the SubForm excluding the title bar and
border.

A SubForm is constrained so that it cannot be moved outside its parent. In all other
respects it behaves in a similar manner to a Form object. See Form object and the
descriptions of its properties for further details.

SysColorChange Event 134
Applies To: Root

Description

If enabled, this event is reported when the user or another application updates the sys-
tem colour palette. The event is reported after the change has taken place and cannot
be disabled or inhibited in any way. If you want your application to respond to
colour palette changes, this event gives you the opportunity of doing so.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 2-element vector as follows :

[1] Object ref or character vector

[2] Event 'SysColorChange' or 134

SysMenu Property
Applies To: Form, SubForm

Description

This property determines whether or not a Form or SubForm has a "SystemMenu "
box in the top-left corner of its border. Pressing the left mouse button in this box
brings up the standard window control menu for the Form. Double clicking the box
closes the Form.

SysMenu is a single number with the value 0 (no Systemmenu box) or 1 (System
Menu box is provided). The default is 1.

Chapter 2: A-Z Reference 532

If any of the SysMenu, MaxButton, MinButton and Moveable properties are set to 1,
the Form or SubForm has a title bar.

SysTrayItem Object
Purpose: The SysTrayItem object represents an item that you can create in

the Windows System Tray.

Parents Form, Root

Children Icon, Menu, Timer

Properties Type, Event, IconObj, Data, Tip, Translate, Popup, KeepOnClose,
MethodList, ChildList, EventList, PropList

Methods Detach, ShowBalloonTip, Wait

Events Close, Create, MouseDown, MouseUp, MouseMove,
MouseDblClick, BalloonShow, BalloonHide, BalloonTimeout,
BalloonUserClick

Description

The SysTrayItem object appears as an icon in the Windows System Tray and allows
the user to interact with your application even if it is minimised or has no other vis-
ible presence.

Interaction is provided through a pop-up menu that is displayed when the user clicks
on the SysTrayItem. The SysTrayItem does not support mouse or keyboard events
directly.

The IconObj property specifies the name of an Icon object used to display the Sys-
TrayItem. If not specified, the default is the standard Dyalog APL icon.

The Popup property specifies the name of a Menu object (which may be a child of the
SysTrayItem). The Menu object is displayed automatically when the user clicks on
the SysTrayItem icon. The Menu should contain one or more MenuItem objects with
suitable callback functions attached.

Unlike other popup menus, the SysTrayItemmenu is not activated by an explicit
(modal) ⎕DQ but is posted automatically for you. The MenuItem callbacks will be
executed by the current ⎕DQ, with the exception of modal ⎕DQs on MsgBox, File-
Box, Locator and other popup Menu objects. For example, if your application is in a
modal ⎕DQ on a Form, that ⎕DQ will react to and action events on the SysTrayItem
menu, even though it is not explicitly included in the list of objects being ⎕DQ'ed.

The Tip property specifies a character string to be displayed when the user hovers the
mouse over the SysTrayItem. This is displayed using the user's current setting for Tip
text and it is not possible to change this appearance.

Chapter 2: A-Z Reference 533

TabBar Object
Purpose: To manage a set of TabBtn objects.

Parents ActiveXControl, Form, SubForm

Children Circle, Ellipse, Font, Marker, Poly, Rect, TabBtn, Text, Timer

Properties Type, Posn, Size, Coord, Align, Active, Visible, Event, VScroll,
HScroll, Sizeable, FontObj, BCol, Picture, OnTop, IconObj,
CursorObj, AutoConf, YRange, XRange, Data, Attach, TextSize,
Handle, Hint, HintObj, Tip, TipObj, TabObj, Translate,
Accelerator, AcceptFiles, KeepOnClose, Redraw, TabIndex,
MethodList, ChildList, EventList, PropList

Methods Detach, GetTextSize, Animate, GetFocus, ShowSIP

Events Close, Create, DragDrop, Configure, ContextMenu, DropFiles,
DropObjects, Expose, Help, MouseDown, MouseUp, MouseMove,
MouseDblClick, MouseEnter, MouseLeave, MouseWheel, Select

Description

The TabBar object manages a group of TabBtn objects. These are associated with a
set of SubForm objects which are positioned on top of one another. When the user
clicks on a TabBtn, the corresponding SubForm is brought to the top and given the
focus.

TabBar and TabBtn objects were implemented before Windows provided direct sup-
port for tabbed dialogs, and have been superceded by TabControl and
TabButton objects. Please use these instead.

By default, a TabBar is a flat bar stretched across the bottom of its parent form. You
can alter its appearance using its EdgeStyle property and you can control its align-
ment with its Align property. Align can be set to Top , Bottom (the default), Left or
Right and causes the TabBar to be attached to the corresponding edge of the Form. A
TabBar aligned Top or Bottom will automatically stretch or shrink horizontally
when its parent Form is resized, but it will remain fixed vertically. A TabBar aligned
Left or Right will stretch vertically but will remain fixed horizontally. By default a
TabBar occupies the entire width or length of the side of the Form to which it is
attached. Both the Posn and Size properties can be altered.

Chapter 2: A-Z Reference 534

The alignment of a TabBar also determines the orientation of its TabBtns. TabBars
aligned Top or Bottom cause their TabBtns to be drawn left to right with the free
edge of the TabBtns facing downwards or upwards respectively. TabBar aligned Left
or Right draw their TabBtns downwards with their free edges facing left or right
respectively.

By default, TabBtn objects are positioned along the inner edge of the TabBar. This is
the edge closest to the SubForm s they will tab. They are also positioned so that they
overlap one another horizontally or vertically according to the Align property.

The HScroll and VScroll properties determine what happens when the end of the Tab-
Bar is reached. If HScroll or VScroll is 0 (the default) a TabBtn that would otherwise
extend beyond the TabBar is instead positioned immediately above, below or along-
side the first TabBtn in the TabBar, thereby starting a new row or column. Note how-
ever that the TabBar is not automatically resized vertically to accommodate a second
row or column. If you want a multi-flight TabBar you have to set its height or width
explicitly. If HScroll or VScroll is ¯1 or ¯2, TabBtns continue to be added along the
TabBar even though they extend beyond its boundary and may be scrolled into view
using a mini scrollbar. If HScroll is ¯1, the scrollbar is shown whether or not any con-
trols extend beyond the TabBar. If HScroll is ¯2, the scrollbar appears only if
required and may appear or disappear when the user resizes the parent Form.

VScroll and HScroll may only be set when the object is created and may not sub-
sequently be changed.

If you specify a value for its Posn property, a TabBtn will be placed at the requested
position regardless of the value of Style, HScroll or VScroll. However, the next con-
trol added will take its default position from the previous one according to the value
of these properties. Thus if you wish to group your controls together with spaces
between the groups, you need only specify the position of the first one in each group.

If you specify a value for its Posn property, a TabBtn will be placed at the requested
position regardless of the value of Align. However, the next TabBtn added will take
its default position from the previous one. Thus if you wish to group your TabBtns
together with spaces between the groups, you need only specify the position of the
first one in each group.

Chapter 2: A-Z Reference 535

TabBtn Object
Purpose: To tab a SubForm.

Parents TabBar

Children Timer

Properties Type, Caption, Posn, Size, Align, Border, Active, Visible, Event,
FontObj, FCol, BCol, AutoConf, Data, Attach, EdgeStyle, TabObj,
Translate, Accelerator, KeepOnClose, MethodList, ChildList,
EventList, PropList

Methods Detach, ChooseFont

Events Close, Create, FontOK, FontCancel, DropObjects, Select,
MouseDown, MouseUp, MouseMove, MouseDblClick

Description

TabBtn objects are associated with SubForms which are positioned on top of one
another. When the user clicks on a TabBtn, the corresponding SubForm is brought to
the top and given the focus.

TabBar and TabBtn objects were implemented before Windows provided direct sup-
port for tabbed dialogs, and have been superceded by TabControl and TabButton
objects. Please use these instead.

The appearance of a TabBtn is determined by its EdgeStyle, Border and Caption prop-
erties. These take their defaults from the SubForm with which the TabBtn is asso-
ciated. Thus there is generally no need to specify them. BCol also defaults to that of
its associated SubForm.

The position of a TabBtn is normally determined by its parent TabBar and its default
size is fixed (22 x 80 pixels), and not related to the size of its Caption. These defaults
can be overridden using the Posn and Size properties.

A SubForm is associated with a TabBtn by setting the TabObj property of the Sub-
Form to the name of, or ref to, the TabBtn. The TabObj property of the TabBtn is a
read-only property that contains the name of, or ref to, the associated SubForm.

Chapter 2: A-Z Reference 536

TabButton Object
Purpose: The TabButton object represents an individual tab or button in a

TabControl

Parents TabControl

Children Timer

Properties Type, Caption, Posn, Size, State, Event, ImageIndex, Data, Tip,
TabObj, Accelerator, KeepOnClose, MethodList, ChildList,
EventList, PropList

Methods Detach

Events Close, Create, Select

Description

The TabButton object represents an individual tab or button in a TabControl

The position and size of a TabButton object are entirely determined by its parent Tab-
Control and may not be altered. For this reason, the Posn and Size properties are read-
only.

The Caption property specifies the text that appears on the button or tab.

A picture is specified by setting the ImageIndex property of the TabButton. This is a
number that points to a particular icon or bitmap defined in an ImageList object
whose name is specified by the ImageListObj property of the parent TabControl.

Note that all TabButton objects share the same font which is defined by the FontObj
property of the TabControl.

The foreground and background colours of the TabButton object are fixed.

When used as a tab, a TabButton is normally attached to a SubForm by the TabObj
property of the SubForm. The TabObj property of the TabButton itself, is a read-only
property that specifies the name of, or ref to, the SubForm to which the TabButton is
attached.

The State property reports the (selected) state of a TabButton and applies only when
its parent TabControl has Style set to 'Buttons' or 'FlatButtons' and Mul-
tiSelect set to 1.

Chapter 2: A-Z Reference 537

TabControl Object
Purpose: The TabControl object provides access to the native Windows tab

control.

Parents ActiveXControl, CoolBand, Form, SubForm

Children ImageList, SubForm, TabButton, Timer

Properties Type, Posn, Size, Style, Visible, Event, ImageListObj, FontObj,
Data, Attach, Handle, TabObj, KeepOnClose, MultiLine, TabSize,
Justify, TabJustify, Align, MultiSelect, TabFocus, HotTrack,
ScrollOpposite, FlatSeparators, MethodList, ChildList, EventList,
PropList

Methods Detach, GetTextSize, Animate, GetFocus, ShowSIP

Events Close, Create

Description

The standard tab control is analogous to a set of dividers in a notebook and allows
you to define a set of pages that occupy the same area of a window or dialog box.
Each page consists of a set of information or a group of controls that the application
displays when the user selects the corresponding tab.

A special type of tab control displays tabs that look like buttons. For example, the
Windows taskbar is such a tab control.

The overall appearance of the TabControl is determined by the Style property which
may be 'Tabs' (the default), 'Buttons' or 'FlatButtons'.

Individual tabs or buttons are represented by TabButton objects which should be
created as children of the TabControl object. Optional captions and pictures are spec-
ified by the Caption and ImageIndex properties of the individual TabButton objects
themselves. Otherwise, the appearance of the tabs or buttons is determined by prop-
erties of the TabControl itself.

To implement a multiple page tabbed dialog , you should create a Form, then a Tab-
Control with Style 'Tabs' as a child of the Form. Next, create one or more pairs of
TabButton and SubForm objects as children of the TabControl. You associate each
SubForm with a particular tab by setting its TabObj property to the name of, or ref to,
the associated TabButton object. Making the SubForms children of the TabControl
ensures that, by default, they will automatically be resized correctly. You may alter-
natively create your SubForms as children of the main Form and establish appropriate
resize behaviour using their Attach property.

Chapter 2: A-Z Reference 538

'F'⎕WC'Form' 'TabControl: Default'('Size' 25 50)
'F.TC'⎕WC'TabControl'

'F.TC.IL'⎕WC'ImageList'
'F.TC.IL.'⎕WC'Icon'('' 'APLIcon')
'F.TC.IL.'⎕WC'Icon'('' 'FUNIcon')
'F.TC.IL.'⎕WC'Icon'('' 'EDITIcon')

'F.TC'⎕WS'ImageListObj' 'F.TC.IL'

'F.TC.T1'⎕WC'TabButton' 'One'('ImageIndex' 1)
'F.TC.T2'⎕WC'TabButton' 'Two'('ImageIndex' 2)
'F.TC.T3'⎕WC'TabButton' 'Three'('ImageIndex' 3)

'F.TC.S1'⎕WC'SubForm'('TabObj' 'F.TC.T1')
'F.TC.S2'⎕WC'SubForm'('TabObj' 'F.TC.T2')
'F.TC.S3'⎕WC'SubForm'('TabObj' 'F.TC.T3')

A TabControl object with Style'Buttons' or 'FlatButtons'may be used in a
similar way (i.e. to display a set of alternative pages), although buttons in this type of
TabControl are more normally used to execute commands. For this reason, these
styles of TabControl are without borders.

If Style is 'FlatButtons', the FlatSeparators property specifies whether or not
separators are drawn between the buttons. The default value of FlatSeparators is 0 (no
separators).

The Align property specifies along which of the 4 edges of the TabControl the tabs
or buttons are arranged. Align also controls the relative positioning of the picture
and Caption within each TabButton. Align may be Top (the default) , Bottom, Left or
Right.

Chapter 2: A-Z Reference 539

If Align is 'Top'or 'Bottom', the tabs or buttons are arranged along the top or bot-
tom edge of the TabControl and picture is drawn to the left of the Caption.

If Align is 'Left', the tabs or buttons are arranged top-to-bottom along the left
edge of the TabControl, and the pictures are drawn below the Captions.

If Align is 'Right' , the tabs are arranged top-to-bottom along the right edge of the
TabControl, and the pictures are drawn above the Captions.

The Attach property specifies how the TabControl responds when its parent is
resized. Its default value, which is independent of the Align property, is 'None'
'None' 'None' 'None'. This causes the TabControl to maintain its original pro-
portions when its parent is resized.

The MultiLine property determines whether or not your tabs or buttons will be
arranged in multiple flights or multiple rows/columns.

The default value ofMultiLine is 0, in which case, if you have more tabs or buttons
than will fit in the space provided, the TabControl displays an UpDown control to
permit the user to scroll them.

If MultiLine is set to 1, the tabs are displayed in multiple flights or the buttons are dis-
played in multiple rows .

The ScrollOpposite property specifies that unneeded tabs scroll to the opposite side
of a TabControl, when a tab is selected. Setting ScrollOpposite to 1 forces MultiLine
to 1 also.

If MultiLine is 1, the way that multiple flights of tabs or rows/columns of buttons are
displayed is further defined by the Justify property which may be 'Right'(the
default) or None.

If Justify is 'Right'(which is the default), the TabControl increases the width of
each tab, if necessary, so that each row of tabs fills the entire width of the tab control.
Otherwise, if Justify is empty or 'None', the rows are ragged.

By default, the size of the tabs may vary from one to another. Fixed size tabs may be
obtained by setting the TabSize property.

To obtain fixed sized tabs with MultiLine set to 1, you must however also set Justify
to 'None'.

If fixed size tabs are in effect, the positions at which the picture and Caption are
drawn within each TabButton is controlled by the TabJustify property which may be
'Centre', 'Edge', or 'IconEdge'.

The font used to draw the captions in the TabButton objects is determined by the
FontObj property of the TabControl.

Chapter 2: A-Z Reference 540

You cannot specify the foreground or background colours of the tabs/buttons, nor
can you use different fonts in different tabs/buttons. The orientation of the Caption
text is always determined by the value of the Align property of the TabControl.

The TabObj property is read-only and reports the name of, or ref to, the
TabButton that is currently selected.

The MultiSelect property specifies whether or not the user can select more than one
button in a TabControl at the same time, by holding down the Ctrl key when click-
ing. The default is 0 (only one button may be selected). MultiSelect is ignored if
Style is 'Tabs'.

The TabFocus property specifies the focus behaviour for the TabControl object and
may be 'Normal'(the default), 'Never' or 'ButtonDown'.

The HotTrack property specifies whether or not the tabs or buttons are automatically
highlighted by the mouse pointer. The default is 0 (no highlighting).

TabFocus Property
Applies To: TabControl

Description

The TabFocus property specifies the focus behaviour for the TabControl object and
may

TabFocus is a character vector that may be 'Normal' (the default), 'Never' or
'ButtonDown'.

If TabFocus is 'Normal', the tabs or buttons in a TabControl do not immediately
receive the input focus when clicked, but only when clicked a second time. This
means that, normally, when the user circulates through the tabs, the input focus will
be given to the appropriate control in the associated SubForm. However, if the user
clicks twice in succession on the same tab or button, the TabControl itself will
receive the input focus.

If TabFocus is 'ButtonDown', the tabs or buttons in a TabControl receive the
input focus when clicked.

If TabFocus is 'Never', the tabs or buttons in a TabControlnever receive the input
focus. This allows the user to circulate through a set of tabbed SubForms without
ever losing the input focus to the TabControl itself.

Chapter 2: A-Z Reference 541

TabIndex Property
Applies To: ActiveXControl, Button, ButtonEdit, Calendar, ColorButton,

Combo, ComboEx, DateTimePicker, Edit, Form, Grid, Group,
Label, List, ListView, MDIClient, ProgressBar, RichEdit, Scroll,
SM, Spinner, Static, StatusBar, SubForm, TabBar, ToolBar,
TrackBar, TreeView, UpDown

Description

The TabIndex property reports the ⎕IO-dependant relative position of a child object
within the list of child objects owned by its parent. If N is the number of children
owned by an object, TabIndex is an integer between ⎕IO and (N-~⎕IO). The
sequence of objects in this list is also used as the tabbing sequence, i.e. if the input
focus is on the first child in the list, pressing Tab moves the input focus to the next
child in the list.

When you create a child object, it is inserted in the list at the position specified by its
TabIndex property. If TabIndex is omitted, it is appended to the end of the list.

If you subsequently change TabIndex, the object is moved to the corresponding posi-
tion in the list.

Naturally, if you specify a value of TabIndex that is greater than the number of exist-
ing children, the object is inserted at or moved to the end of the list.

Chapter 2: A-Z Reference 542

TabJustify Property
Applies To: TabControl

Description

The TabJustify property specifies, the positions at which the picture and caption are
drawn within each tab or button implemented by a TabButton in a TabControl
object.

TabJustify is a character vector that may be 'Centre', 'Edge', or 'IconEdge'.
Its default value is 'Centre'.

If TabJustify is 'Centre', the picture and caption are arranged in the centre of the
TabButton.

If TabJustify is 'Edge', the picture and caption are together aligned to the appro-
priate edge of the TabButton according to the value of Align.

If TabJustify is set to 'IconEdge', the caption is drawn centrally and only picture
is aligned to the edge.

TabJustify is only honoured if fixed size tabs are in effect.

Chapter 2: A-Z Reference 543

TabObj Property
Applies To: SubForm, TabBar, TabBtn, TabButton, TabControl

Description

TabObj is a ref or a character vector.

For a SubForm, it specifies the name of , or ref to, a TabBtn or TabButton object that
is associated with the SubForm. Selecting the TabBtn or TabButton causes the Sub-
Form to be given the input focus.

For TabBtn and TabButton objects, TabObj is a read-only property that contains the
name of, or ref to, the associated SubForm.

For a TabBar or TabControl, TabObj is a read-only property that contains the name
of, or ref to, the currently selected TabBtn or TabButton.

TabSize Property
Applies To: TabControl

Description

The TabSize property specifies the size of fixed size tabs or buttons in a TabControl
object.

By default, the size of the tabs may vary from one to another. Fixed size tabs may be
obtained by setting the TabSize property.

TabSize is a 2-element numeric vector that specifies the height and width of the tab.
The first element of TabSize may be set to ⍬ which means "default height".

To obtain fixed sized tabs with MultiLine set to 1, you must however also set the Jus-
tify property to 'None'.

If MultiLine is 1 and Justify is 'Right', TabSize is ignored.

Chapter 2: A-Z Reference 544

Target Property
Applies To: BrowseBox

Description

The Target property is a read-only character string that specifies the chosen folder or
other resource selected by the user in a BrowseBox object.

If the BrowseFor is 'Directory', Target will contain a directory name followed
by the character "\". Otherwise, Target just contains the name.

TargetState Property
Applies To: TCPSocket

Description

The TargetState property reflects the intended final state of a TCPSocket object. Its
possible values are as follows:

Stream UDP

Client Open

Server Bound

Closed Closed

Setting TargetState to Closed is the recommended way to close a socket. It informs
APL that you want the socket to be closed, but only when it is safe to do so. When
all the data has been sent, the TCPSocket will generate a TCPClose event which,
unless a callback function decides otherwise, will cause the TCPSocket object to dis-
appear.

To control socket closure, you may execute the following steps:

1. Set TargetState to Closed
2. Either:

a. continue processing or
b. wait (using ⎕DQ) for the TCPSocket to disappear or
c. wait (using ⎕DQ) for the TCPClose event

Chapter 2: A-Z Reference 545

TCPAccept Event 371
Applies To: TCPSocket

Description

If enabled, this event is reported when a client connects to a server TCPSocket object.

You may not disable or nullify the operation by setting the action code for the event
to ¯1 or by returning 0 from a callback function. You may also not call TCPAccept
as a method or generate this event artificially using ⎕NQ.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 3-element vector as follows :

[1] Object ref or character vector

[2] Event 'TCPAccept' or 371

[3] Socket handle an integer

The socket handle reported by this event is the socket handle for the original lis-
tening socket that was associated with the TCPSocket before the client connected.

If you want your server to remain available for other clients, you must create a new
TCPSocket object in a callback function attached to this event. The new TCPSocket
object must be created by cloning the original listening socket. This is done by spec-
ifying the socket handle as the value of its SocketNumber property. You may not
specify any other properties (except Event and Data) in the ⎕WC statement that
creates the new clone object.

The default processing for this event is to close the socket handle reported by the 3rd
element of the event message unless it has been associated with a new TCPSocket
object by the callback function as described above. You may prevent this from occur-
ring by returning 0 from a callback function. This may be necessary in a mul-
tithreaded application.

You may not call TCPClose as a method or generate this event artificially using ⎕NQ.

Chapter 2: A-Z Reference 546

TCPClose Event 374
Applies To: TCPSocket

Description

If enabled, this event is reported when the remote end of a TCP/IP connection breaks
the connection.

You may not disable or nullify the operation by setting the action code for the event
to ¯1 or by returning 0 from a callback function. You may also not call TCPClose as
a method or generate this event artificially using ⎕NQ.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 2-element vector as follows :

[1] Object ref or character vector

[2] Event 'TCPClose' or 374

TCPConnect Event 372
Applies To: TCPSocket

Description

If enabled, this event is reported when a server accepts the connection of a client
TCPSocket object and is reported by the client.

You may not disable or nullify the operation by setting the action code for the event
to ¯1 or by returning 0 from a callback function. You may also not call TCPConnect
as a method or generate this event artificially using ⎕NQ.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 2-element vector as follows :

[1] Object ref or character vector

[2] Event 'TCPConnect' or 372

Chapter 2: A-Z Reference 547

TCPError Event 370
Applies To: TCPSocket

Description

This event is generated when a fatal TCP/IP error occurs and is reported by a
TCPSocket object.

The default processing for this event is to display a message box containing details of
the TCP/IP error. You may disable the display of this message box by setting the
action code for the event to ¯1 or by returning 0 from a callback function attached to
it.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 3-element vector as follows :

[1] Object ref or character vector

[2] Event 'TCPError' or 370

[3] Error code a number

[4] Error text a character vector

TCPGetHostID Method 376
Applies To: Root, TCPSocket

Description

This method is used to obtain the IP Address of your PC.

The TCPGetHostID method is niladic.

The (shy) result is a character string containing your IP address. If you have more than
one, it will return the first.

For example:

TCPCetHostID
193.32.236.43

Chapter 2: A-Z Reference 548

TCPGotAddr Event 377
Applies To: TCPSocket

Description

If enabled, this event is reported when a host name (specified by the Remo-
teAddrName or LocalAddrName property) is resolved to an IP address.

You may not disable or nullify the operation by setting the action code for the event
to ¯1 or by returning 0 from a callback function. You may also not call TCPGotAddr
as a method or generate this event artificially using ⎕NQ.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 2-element vector as follows :

[1] Object ref or character vector

[2] Event 'TCPGotAddr' or 377

Note that the IP address is not reported in the event message but may be obtained
from RemoteAddr or LocalAddr as appropriate.

TCPGotPort Event 378
Applies To: TCPSocket

Description

If enabled, this event is reported when a port name (specified by the Remote-
PortName or LocalPortName property) is resolved to a port number.

You may not disable or nullify the operation by setting the action code for the event
to ¯1 or by returning 0 from a callback function. You may also not call TCPGotPort
as a method or generate this event artificially using ⎕NQ.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 2-element vector as follows :

[1] Object ref or character vector

[2] Event 'TCPGotPort' or 378

Note that the port number is not reported in the event message but may be obtained
from RemotePort or LocalPort as appropriate.

Chapter 2: A-Z Reference 549

TCPReady Event 379
Applies To: TCPSocket

Description

If enabled, this event is reported when the TCP/IP buffers are free and there is no data
waiting to be sent in the internal APL queue.

This event is provided to enable you to control the transmission of a large amount of
data that cannot be handled in a single call to TCPSend.

The amount of data that the system can handle in one go is limited by TCP/IP buffers,
the speed of the network, and the amount ofWindows memory and disk space avail-
able for buffering.

You may not disable or nullify the operation by setting the action code for the event
to ¯1 or by returning 0 from a callback function. However, you may call TCPReady
as a method or generate this event artificially using ⎕NQ.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 2-element vector as follows :

[1] Object ref or character vector

[2] Event 'TCPReady' or 379

TCPRecv Event 373
Applies To: TCPSocket

Description

If enabled, this event is reported when data is received by a TCPSocket object.

You may not disable or nullify the operation by setting the action code for the event
to ¯1 or by returning 0 from a callback function. You may also not call TCPRecv as a
method or generate this event artificially using ⎕NQ.

Chapter 2: A-Z Reference 550

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 5-element vector as follows :

[1] Object ref or character vector

[2] Event 'TCPRecv' or 373

[3] Data the data received

[4] IP address character vector

[5] Port number integer

Elements [4-5] refer to the IP address and port number of the remote process that sent
the data.

If the SocketType is 'Stream', this information will be identical to the values of
the RemoteAddr and RemotePort respectively.

If the SocketType is 'UDP'and there is potentially more than one partner sending
you data, the IP address and port number information provided by the TCPRecv
event is more reliable than the current values of RemoteAddr and RemotePort as
these may already have changed.

TCPSend Method 375
Applies To: TCPSocket

Description

This method is used to send data to a remote process connected to a TCPSocket
object

The argument to TCPSend is a 1 or 3-element array as follows:

[1] Data the data to be sent

[2] IP address character vector

[3] Port number integer

If Style is 'Char', the data to be sent must be a character vector. If Style is 'Raw',
the data to be sent must be an integer vector whose elements are in the range -128 to
255. If Style is 'APL', any array may be transmitted.

The optional IP address and Port number parameters specify the intended recipient
of the message and apply only if the SocketType is 'UDP', in which case they are
mandatory. If the SocketType is 'Stream', these parameters will be ignored and
should be omitted.

Chapter 2: A-Z Reference 551

TCPSendPicture Method 380
Applies To: TCPSocket

Description

This method is used to transmit a picture represented by a Bitmap object to a TCP/IP
socket. The picture may be transmitted in GIF or in PNG format.

The argument to TCPSendPicture is a 1 or 2-element array as follows:

[1] Bitmap name character vector

[2] Picture format character vector, 'GIF' or 'PNG'

If Picture format is omitted, the default is GIF format.

Note that the Style of the TCPSocket object must be set to 'Raw' before you
execute the TCPSendPicture method.

The (shy) result of the method is an integer that reports the number of bytes that were
transmitted.

Example:
S1.TCPSendPicture 'BM' 'PNG'

4930

Note:Although PNG is recognised as the latest graphics standard for displaying pic-
tures, not all Web browsers support it.

See also: MakeGIF, MakePNG

Chapter 2: A-Z Reference 552

TCPSocket Object
Purpose: The TCPSocket object provides an interface to TCP/IP.

Parents ActiveXControl, Calendar, CoolBand, DateTimePicker, Form,
NetType, OLEClient, OLEServer, PropertyPage, Root, SubForm,
TCPSocket

Children Bitmap, BrowseBox, Clipboard, Cursor, FileBox, Font, Form, Icon,
ImageList, Locator, Menu, Metafile, MsgBox, OCXClass,
OLEClient, Printer, PropertySheet, TCPSocket, Timer, TipField

Properties Type, LocalAddr, LocalPort, RemoteAddr, RemotePort, Style,
Event, LocalAddrName, LocalPortName, RemoteAddrName,
RemotePortName, Data, SocketType, SocketNumber, CurrentState,
TargetState, KeepOnClose, Encoding, MethodList, ChildList,
EventList, PropList

Methods Detach, TCPSend, TCPGetHostID, TCPSendPicture, Wait

Events Close, Create, TCPError, TCPAccept, TCPConnect, TCPRecv,
TCPClose, TCPGotAddr, TCPGotPort, TCPReady

Description

The TCPSocket object provides an event-driven mechanism to communicate with
other programs (including Dyalog APL) running on other computers and with the
world-wide Web.

The SocketType property is a character vector that specifies the type of the TCP/IP
socket. This is either 'Stream'(the default), or 'UDP'. SocketType must be defined
when the object is created and may not be set or changed using ⎕WS.

The Style property is a character vector that specifies the type of data transmitted or
received by the socket; it may be 'Char', 'Raw', or 'APL'. The value 'APL' is
valid only if the SocketType is 'Stream'.

The Encoding property is a character vector that specifies how character data are
encoded or translated. The possible values are 'None', 'UTF-8', 'Classic', or
'Unicode', depending upon the value of the Style property.

Chapter 2: A-Z Reference 553

LocalAddr and LocalPort properties identify your end of the connection;
RemoteAddr and RemotePort identify the other end of the connection. The values of
the two sets of properties are clearly symmetrical; your LocalAddr is your partner's
RemoteAddr, and there are strict rules concerning which of them you and your part-
ner may set. See the individual descriptions of these properties for details.

The SocketNumber property is the Window handle of the socket attached to the
TCPSocket object and is generally a read-only property. The only time that
SocketNumber may be specified is when a server replicates (clones) a listening
socket to which a client has just connected.

Text Object
Purpose: Writes text.

Parents ActiveXControl, Animation, Bitmap, Button, ButtonEdit, Combo,
ComboEx, Edit, Form, Grid, Group, Label, List, ListView,
MDIClient, Metafile, Printer, ProgressBar, PropertyPage,
PropertySheet, RichEdit, Scroll, Spinner, Static, StatusBar,
SubForm, TabBar, TipField, ToolBar, TrackBar, TreeView,
UpDown

Children Timer

Properties Type, Text, Points, FCol, BCol, VAlign, HAlign, Coord, Active,
Visible, Event, Dragable, FontObj, OnTop, CursorObj, AutoConf,
Data, Translate, Accelerator, KeepOnClose, DrawMode,
MethodList, ChildList, EventList, PropList

Methods Detach, ChooseFont

Events Close, Create, FontOK, FontCancel, DragDrop, MouseDown,
MouseUp, MouseMove, MouseDblClick, Help, Select

Description

The Text object is used to write arbitrary text. It can be used in a Form, SubForm or
Group instead of a Label. The main difference is that a Label is implemented as a true
window object (thus consuming Windows resources). A Text object is not a window
and consumes no MS-Windows resources. However, a Label supports DragDrop
events and has various useful properties that are not shared by the Text object.

Chapter 2: A-Z Reference 554

The contents of the Text object are defined by its Text property. This is a character
array containing one of the following :

l a simple scalar
l an enclosed vector or matrix (also a scalar)
l a simple vector
l a simple matrix
l a vector of enclosed vectors or matrices

Points is either a simple 2-column matrix of (y,x) co-ordinates, or a 2-element vector
of y-coordinates and x-coordinates respectively.

There are two distinct cases :

1. Points specifies a single point. In this case, Text may be a single scalar char-
acter, a simple vector, or a matrix containing a block of text. The result is
that the character, string, or matrix is written at the specified point.

2. Points specifies more than one point. There are three possibilities :
a. If Text is a scalar, its contents are written at each of the points in

Points. This means that by enclosing a vector or matrix, you can draw a
string or block of text at several locations.

b. If Text is a vector, each element of Text is written at the corresponding
position in Points.

c. If Text is a matrix, each row of Text is written at the corresponding
position in Points.

FontObj specifies a single font to be used to write the Text. See a description of the
FontObj property for details.

FCol specifies the colour of the Text. For a single text item, FCol may be a single
number which specifies one of the standard MS-Windows colours, or a simple 3-ele-
ment numeric vector of RGB colour intensities. If more than one text item is
involved, FCol may be a vector which specifies the colour for each item separately. If
so, its length must be the same as the number of points specified by Points.

BCol specifies the background colour of the text, i.e. the colour for the part of the
character cell that is blank. It is defined in the same way as FCol.

HAlign and VAlign specify the horizontal and vertical alignment of the text respec-
tively. They may each be numeric scalars or vectors with the same length as the
number of points specified in Points. See HAlign and VAlign for details.

When one or more of FCol, BCol, HAlign and VAlign are vectors, the different com-
ponents of Text are drawn using the corresponding colours and alignments.

The value of the Dragable property specifies whether or not the Text object can be
dragged by the user. The value of the AutoConf property determines whether or not
the Text object is repositioned when its parent is resized.

Chapter 2: A-Z Reference 555

Examples:
Write 'A' at (10,20)

'g.t1' ⎕WC 'Text' 'A' (10 20)

Write 'h' at (10,20) in red

'g.t1' ⎕WC 'Text' 'h' (10 20) ('FCol' 255 0 0)

Write 'Hello' at (10,20)

'g.t1' ⎕WC 'Text' 'Hello' (10 20)

Write 'THIS IS A
BLOCK OF
TEXT ' at (20,30)

BLK←3 9⍴'THIS IS A BLOCK OF TEXT '
'g.t1' ⎕WC 'Text' BLK (10 20)

Write 'A' at (10,20) and at (30,40)

'g.t1' ⎕WC 'Text' 'A' ((10 30)(20 40))

Write a red '+' at (10,20) and a green '+' at (20 40)

'g.t1' ⎕WC 'Text' '+' ((10 30)(20 40))('FCol' (255
0 0)(0 255 0))

Write 'Hello' at (10,20) and at (30,40)

'g.t1' ⎕WC 'Text' (⊂'Hello') ((10 30)(20 40))

Write 'A' at (10,20) and 'B'at (30,40)

'g.t1' ⎕WC 'Text' 'AB' ((10 30)(20 40))

Write 'Hello' at (10,20) and 'World'at (30,40)

'g.t1' ⎕WC 'Text' ('Hello' 'World')((10 30)(20 40))

Chapter 2: A-Z Reference 556

Text Property
Applies To: ButtonEdit, Clipboard, Combo, ComboEx, Edit, MsgBox,

RichEdit, Spinner, StatusField, Text

Description

This property is associated with the text contents of an object and is a character array.

In a ButtonEdit, Combo, StatusField, Spinner, or a single-line Edit object, Text may
be a simple scalar or a simple vector.

In a RichEdit , a multi-line Edit field or in a MsgBox, the value of Text may also be a
simple matrix, or a vector of vectors. If so, "new-line" characters are appended to each
row of the matrix, or to each vector in a vector of vectors, before being displayed. The
user may insert or add a "new-line" character in a multi-line Edit by pressing Ctrl-
Enter (Enter itself is used to press Buttons).

Note that if word-wrapping is in effect in a multi-line Edit object, the structure of
Text does not correspond to the lines displayed.

In a Text object, the value of the Text property may be a simple scalar, an enclosed
vector or matrix, a simple vector, a simple matrix, or a vector of enclosed vectors or
matrices.

In general, the value of Text returned by ⎕WG has the same structure that was
assigned to it by ⎕WC or by the most recent call to ⎕WS. New-Line characters are
removed.

You can copy text into the Windows Clipboard by using ⎕WS to set Text for a Clip-
board object. In this case you may specify a simple character scalar, vector or matrix,
or a vector of character vectors. If you are retrieving data from the clipboard that has
been stored by another application, Text will be either a character vector or a vector
of character vectors.

The Text property of a StatusField is updated automatically if its Style property is set
to monitor the status of a key.

Chapter 2: A-Z Reference 557

TextSize Property
Applies To: ActiveXControl, Bitmap, Edit, Form, Grid, Printer, Root, Static,

StatusBar, SubForm, TabBar, ToolBar

Description

This property has been replaced by the GetTextSize method, which should be used
instead. TextSize is retained only for compatibility with previous versions of Dyalog
APL.

TextSize is a "read-only" property that reports the size of the bounding rectangle of a
text item in a given font. The result is given in the co-ordinate system of the object in
question. This property is useful for positioning Text objects.

When you query TextSize you give the text item in whose size you are interested
and, optionally, the name of a Font object. The text itemmay be a simple scalar, a vec-
tor or a matrix. If the Font is omitted, the result is given using the current font for the
object in question. When you query TextSize on its own, you must enclose the argu-
ment to ⎕WG. This is because APL would otherwise not be able to distinguish
between the text string and font name associated with 'TextSize' and other prop-
erties with the same name as these items.

Examples:
'.' ⎕WG ⊂'TextSize' 'Hello World'

2.666666746 9.625

'FNT1' ⎕WC 'FontObj' 'Arial' 72
'.' ⎕WG ⊂'TextSize' 'Hello World' 'FNT1'

12 41.875

'.' ⎕WS 'Coord' 'Pixel'
'.' ⎕WG ('TextSize' (3 11⍴'Hello World')) 'Coord'

39 55 Pixel

Chapter 2: A-Z Reference 558

Thumb Property
Applies To: Form, ProgressBar, Scroll, Spinner, SubForm, TrackBar, UpDown

Description

This property determines and reports the position of the thumb in an object.

For a Scroll object, the value of Thumb is a single integer whose minimum value is 1
and whose maximum value is defined by the Range property.

For ProgressBar, Spinner, UpDown and TrackBar objects, Thumb is a single numeric
value in the range specified by the Limits property.

For a Form or SubForm object, Thumb is a 2-element vector whose elements refer to
the position of the thumb in the object's own built-in vertical and horizontal scroll-
bars respectively.

For other objects, Thumb is a single numeric value in the range defined by the Limits
property.

ThumbDrag Event 440
Applies To: Scroll, TrackBar

Description

If enabled, this event is generated when the user drags the thumb in a TrackBar
object. The event is reported after the value of the Thumb property has been updated
and is reported continuously as the thumb is dragged. You may not disable this event
or alter its effect with a callback function.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 3-element vector as follows :

[1] Object ref or character vector

[2] Event 'ThumbDrag' or 440

[3] Thumb value Integer. The new value of the Thumb property
resulting from the user dragging the thumb.

Chapter 2: A-Z Reference 559

ThumbRect Property
Applies To: TrackBar

Description

ThumbRect is a read-only property that reports the position and size of the bounding
rectangle of the thumb in a TrackBar object. It is a 4-element integer vector con-
taining:

[1] Vertical position of the top-left corner of the bounding rectangle

[2] Horizontal position of the top-left corner of the bounding rectangle

[3] Height of the bounding rectangle

[4] Width of the bounding rectangle

TickAlign Property
Applies To: TrackBar

Description

TickAlign determines the position of the tick marks in a TrackBar object. For a hor-
izontal TrackBar, TickAlign may be either 'Bottom' (the default), 'Top' or
'Both'. If TickAlign is 'Bottom', the ticks are drawn below the slider. If Tick-
Align is 'Top', the ticks are drawn above it. If TickAlign is 'Both', the ticks are
drawn above and below.

For a vertical TrackBar, TickAlign may be either 'Right' (the default), 'Left', or
'Both' and similarly specifies to which side of the slider bar the ticks are drawn.
Note that TickAlign may only be set when the TrackBar is created with ⎕WC and
may not subsequently be altered using ⎕WS.

Note that ticks are not drawn if the value of HasTicks is 0

Chapter 2: A-Z Reference 560

TickSpacing Property
Applies To: TrackBar

Description

The TickSpacing property specifies the spacing between each tick mark in a Track-
Bar object. It is an integer between 1 and the maximum value of the TrackBar which
is defined by the 2nd element of the Limits property.

For example, if you set ('Limits' 10 50) and you specify ('TickSpacing'
10) you will obtain 5 ticks corresponding to the values 10, 20, 30, 40 and 50 along
the slider bar.

Timer Object
Purpose: To generate an action at regular intervals.

Parents ActiveXControl, Animation, Bitmap, BrowseBox, Button,
ButtonEdit, Calendar, Circle, Clipboard, Combo, ComboEx,
CoolBand, CoolBar, Cursor, DateTimePicker, Edit, Ellipse,
FileBox, Font, Form, Grid, Group, Icon, Image, ImageList, Label,
List, ListView, Locator, Marker, MDIClient, Menu, MenuBar,
MenuItem, Metafile, MsgBox, NetClient, NetType, OLEClient,
OLEServer, Poly, Printer, ProgressBar, PropertyPage, PropertySheet,
Rect, RichEdit, Root, Scroll, Separator, SM, Spinner, Splitter,
Static, StatusBar, StatusField, SubForm, SysTrayItem, TabBar,
TabBtn, TabButton, TabControl, TCPSocket, Text, Timer, TipField,
ToolBar, ToolButton, ToolControl, TrackBar, TreeView, UpDown

Properties Type, Interval, Active, Event, Data, KeepOnClose, MethodList,
ChildList, EventList, PropList

Methods Detach, Wait

Events Close, Create, Timer

Description

The Timer object is used to generate an event at regular intervals. It can be used to
produce animation and to implement "repeaters" such as spin buttons.

The Interval property specifies how often the Timer generates events and is defined
in milliseconds. Its default value is 1000.

Chapter 2: A-Z Reference 561

The Active property determines whether or not the Timer generates events and can be
used to switch the Timer off and on as required.

Note that if you create a Timer object whose Timer event generates an error (for exam-
ple by attaching it to a non-existent callback) it may be very difficult or even impos-
sible to type into the Session, because the error will be displayed over and over
again. Care is therefore recommended.

Timer Event 140
Applies To: Timer

Description

This event is generated at regular intervals by a Timer object and is typically used to
fire a callback function to perform a task repeatedly. Returning a 0 from a callback
function attached to a Timer event has no effect. The event message reported as the
result of ⎕DQ, or supplied as the right argument to your callback function, is a 2 ele-
ment vector as follows :

[1] Object ref or character vector

[2] Event 'Timer' or 140

Tip Property
Applies To: Animation, Button, ButtonEdit, Calendar, ColorButton, Combo,

ComboEx, DateTimePicker, Edit, Form, Grid, Group, Label, List,
ListView, MDIClient, MenuItem, ProgressBar, PropertyPage,
PropertySheet, RichEdit, Scroll, SM, Spinner, Static, StatusBar,
SubForm, SysTrayItem, TabBar, TabButton, ToolBar, ToolButton,
TrackBar, TreeView, UpDown

Description

The Tip property is a character vector or character matrix that specifies a "help" mes-
sage which is to be displayed when the user positions the mouse pointer over the
object. The Tip is displayed in a pop-up TipField object specified by the TipObj
property.

Chapter 2: A-Z Reference 562

TipField Object
Purpose: To display pop-up help.

Parents ActiveXControl, CoolBand, Form, Group, OLEServer,
PropertyPage, PropertySheet, Root, SubForm, TCPSocket

Children Circle, Ellipse, Font, Marker, Poly, Rect, Text, Timer

Properties Type, Event, FontObj, FCol, BCol, Data, Translate, KeepOnClose,
MethodList, ChildList, EventList, PropList

Methods Detach, ChooseFont

Events Close, Create, FontOK, FontCancel

Description

The TipField is used to display pop-up help when the user moves the mouse pointer
over an object.

Most of the GUI objects supported by Dyalog APL/W have Tip and a TipObj prop-
erties. TipObj specifies the name of, or ref to, a TipField object, and Tip specifies a
"help" message. The TipField automatically pops-up to display the Tip when the user
moves the mouse pointer over the object. It disappears when the user moves the
mouse pointer away.

The TipField is a simple box with a 1-pixel black border in which the text specified
by Tip is displayed. FCol, BCol and FontObj can be used to customise the appear-
ance of the text within the box. FCol specifies the colour of the text; BCol specifies
the background colour with which the box is filled. The default is black on yellow.

If you wish to display Tips for particular objects in different fonts and colours, you
must create a separate TipField for each combination of colour and font you need.

Chapter 2: A-Z Reference 563

TipObj Property
Applies To: Animation, Button, ButtonEdit, Calendar, ColorButton, Combo,

ComboEx, DateTimePicker, Edit, Form, Grid, Group, Label, List,
ListView, MDIClient, MenuItem, ProgressBar, PropertyPage,
PropertySheet, RichEdit, Root, Scroll, SM, Spinner, Static,
StatusBar, SubForm, TabBar, ToolBar, TrackBar, TreeView,
UpDown

Description

The TipObj property is a character vector or ref that specifies the name of, or ref to, a
TipField object in which the "help" message defined by the Tip property is to be dis-
played. This message is displayed when the user positions the mouse pointer over the
object.

Note that if TipObj is empty, its value is inherited from its parent. Thus setting
TipObj on a Form defines the default TipField (and thus the default appearance of all
Tips) for all the controls in that Form. Setting TipObj on Root defines the default Tip-
Field for the entire application.

TitleHeight Property
Applies To: Grid

Description

This property is a single number that specifies the height of the column titles dis-
played in a Grid object. It is expressed in the units specified by the Coord property of
the Grid.

TitleWidth Property
Applies To: Grid

Description

This property is a single number that specifies the width of the row titles displayed in
a Grid object. It is expressed in the units specified by the Coord property of the Grid.

Chapter 2: A-Z Reference 564

Today Property
Applies To: Calendar, DateTimePicker

Description

The Today property is an IDN that specifies today's date in a Calendar or Date-
TimePicker object. Its default value is the current date that is set on your computer.

See also CircleToday and HasToday properties.

ToolBar Object
Purpose: To manage a group of controls such as Buttons.

Parents ActiveXControl, CoolBand, Form, SubForm

Children Bitmap, BrowseBox, Button, Calendar, Circle, Combo, ComboEx,
Cursor, DateTimePicker, Edit, Ellipse, FileBox, Font, Group, Icon,
Image, ImageList, Label, List, ListView, Locator, Marker, Menu,
Metafile, MsgBox, OCXClass, Poly, ProgressBar, Rect, RichEdit,
Scroll, SM, Spinner, Static, SubForm, Text, Timer, TrackBar,
TreeView, UpDown

Properties Type, Posn, Size, Coord, Align, Border, Active, Visible, Event,
VScroll, HScroll, Sizeable, FontObj, FCol, BCol, Picture, OnTop,
IconObj, CursorObj, AutoConf, YRange, XRange, Data, Attach,
TextSize, EdgeStyle, Handle, Hint, HintObj, Tip, TipObj,
Translate, Accelerator, AcceptFiles, KeepOnClose, Redraw,
TabIndex, MethodList, ChildList, EventList, PropList

Methods Detach, GetTextSize, Animate, GetFocus, ShowSIP

Events Close, Create, DragDrop, Configure, ContextMenu, DropFiles,
DropObjects, Expose, Help, MouseDown, MouseUp, MouseMove,
MouseDblClick, MouseEnter, MouseLeave, MouseWheel, Select

Description

The ToolBar object is used to display and manage a set of controls. It is typically
used to present a set of Buttons which the user can press to perform various actions.
However, the ToolBar has the ability to manage other controls too.

Chapter 2: A-Z Reference 565

By default, the ToolBar is a raised bar stretched across the top of its parent form. You
can alter its appearance using its EdgeStyle property and you can control its align-
ment with its Align property. Align can be set to Top (the default), Bottom, Left or
Right and causes the ToolBar to be attached to the corresponding edge of the Form.
A ToolBar aligned Top or Bottom will automatically stretch or shrink horizontally
when its parent Form is resized, but it will remain fixed vertically. A ToolBar aligned
Left or Right will stretch vertically but will remain fixed horizontally. By default a
ToolBar occupies the entire width or length of the side of the Form to which it is
attached and is 30 pixels high or wide. You can change these defaults using the
Posn and Size properties.

A ToolBar organises its child controls in the order they are created. The way this is
done is governed by the value of the Align property. If Align is Top or Bottom, the
ToolBar arranges its controls in rows across the screen. If Align is Left or Right, the
ToolBar arranges controls in columns.

The first control added to a ToolBar is automatically positioned 2 pixels down and 2
pixels across from its top left corner. The rule for positioning subsequent controls
depends upon the value of the Align property.

If Align is 'Top'or 'Bottom', controls are positioned so as to be horizontally adja-
cent to one another. Whenever a control is added it is positioned relative to the one
that immediately preceded it so that its top left corner meets the top right corner of
the previous one. The HScroll property determines what happens when the end of the
ToolBar is reached. If HScroll is 0 (the default) a control that would otherwise extend
beyond the width of the ToolBar is instead positioned immediately below the first
control in the ToolBar, thereby starting a new row. Note however that the ToolBar is
not automatically resized vertically to accommodate a second row. If you want a
multi-row ToolBar you have to set its height explicitly. If HScroll is ¯1 or ¯2, con-
trols continue to be added along the ToolBar even though they extend beyond its
right edge and may be scrolled into view using a mini scrollbar. If HScroll is ¯1, the
scrollbar is shown whether or not any controls extend beyond the width of the Tool-
Bar. If HScroll is ¯2, the scrollbar appears only if required and may appear or dis-
appear when the user resizes the parent Form.

If Align is 'Left'or 'Right', controls are positioned so as to be vertically adja-
cent to one another. Whenever a control is added, its top left corner is positioned
against the bottom left corner of the previous control. The VScroll property deter-
mines what happens when the bottom of the ToolBar is reached. If VScroll is 0 (the
default) a control that would otherwise extend beyond the bottom of the ToolBar is
instead positioned immediately to the right of the first one; thereby starting a new col-
umn. Note however that the ToolBar is not automatically resized horizontally to
accommodate a second column. You must set the width of the ToolBar explicitly.

Chapter 2: A-Z Reference 566

If VScroll is ¯1 or ¯2, controls continue to be added down the ToolBar even though
they extend beyond its bottom edge and may be scrolled into view using a mini
scrollbar. If VScroll is ¯1, the scrollbar is shown whether or not any controls extend
beyond the bottom of the ToolBar. If VScroll is ¯2, the scrollbar appears only if
required and may appear or disappear when the user resizes the parent Form.

VScroll and HScroll may only be set when the object is created and may not sub-
sequently be changed.

If you specify a value for its Posn property, a control will be placed at the requested
position regardless of the value of Style, VScroll or HScroll. However, the next con-
trol added will take its default position from the previous one according to the value
of these properties. Thus if you wish to group your controls together with spaces
between the groups, you need only specify the position of the first one in each group.

The ToolBar object was introduced in Dyalog APL before an appropriate standard
Windows control existed. The ToolBar object should be considered as a legacy
object and used only in old GUI applications. The ToolControl object should be
used instead.

ToolboxBitmap Property
Applies To: ActiveXControl, OCXClass

Description

For an ActiveXControl, the ToolboxBitmap property is a character vector or ref that
specifies the name of, or ref to, a Bitmap object that may be used by a host appli-
cation to represent the ActiveXControl when its complete visual appearance is not
required. For example, if you add an ActiveX control to the Microsoft Visual Basic
development environment, its bitmap is added to the toolbox. The Bitmap should
therefore be of an appropriate size, usually 24 x 24 pixels.

For an OCXClass, The ToolboxBitmap is a read-only property that reports a bitmap
image associated with an OLE Control. This is intended for use by a GUI design tool.
Its value is a 2-element vector. The first element is an integer matrix of pixel colours
corresponding to the Bits property of a Bitmap object. The second element is a 3-col-
umn integer matrix specifying the colour map and corresponds to the CMap property
of a Bitmap object.

Thus you can construct a Bitmap object directly from this property with an expres-
sion such as:

'BM'⎕WC'Bitmap' '','GAUGE' ⎕WG'ToolboxBitmap'

where GAUGE is the name of an OCXClass.

Chapter 2: A-Z Reference 567

ToolButton Object
Purpose: The ToolButton object represents a button in a ToolControl.

Parents ToolControl

Children Bitmap, Timer

Properties Type, Caption, Posn, Size, Style, State, Active, Visible, Event,
ImageIndex, Data, Hint, HintObj, Tip, Accelerator, Popup,
KeepOnClose, MethodList, ChildList, EventList, PropList

Methods Detach

Events Close, Create, Help, MouseDown, MouseUp, MouseMove,
MouseDblClick, Select

Description

The ToolButton object represents a selectable button in a ToolControl object.

A ToolButton displays a text string, defined by its Caption property, and an image
defined by its ImageIndex property. Apart from these characteristics, the appearance
of a ToolButton is controlled by its parent ToolControl object.

ImageIndex is an index into an ImageList which contains a set of icons or bitmaps.
The ImageList itself is named by the ImageListObj property of the parent Tool-
Control.

Typically, you will create up to three ImageLists as children of the ToolControl.
These will be used to specify the pictures of the ToolButton objects in their normal,
highlighted (sometimes termed hot) and inactive states respectively. The set of
images in each ImageList is then defined by creating unnamed Bitmap or Icon
objects as children. Finally, when you create each ToolButton you specify ImageIn-
dex, selecting the three pictures which represent the three possible states of the but-
ton.

If you specify only a single ImageList, the picture on the ToolButton will be the
same in all three states.

The behaviour and appearance of a ToolButton is further defined by its Style prop-
erty, which may be 'Push', 'Check', 'Radio', 'Separator' or
'DropDown'.

Push buttons are used to generate actions and pop in and out when clicked. Radio
and Check buttons are used to select options and have two states, normal (out) and
selected (in). Their State property is 0 when the button is in its normal (unselected
state) or 1 when it is selected.

Chapter 2: A-Z Reference 568

Separator buttons are a special case as they have no Caption or picture, but appear as
vertical lines used to separate groups of buttons.

A group of adjacent ToolButtons with Style'Radio' defines a set in which only
one of the ToolButtons may be selected at any one time. The act of selecting one will
automatically deselect any other. Note that a group of Radio buttons must be sep-
arated from Check buttons or other groups of Radio buttons by ToolButtons of
another Style.

A ToolButton with Style'DropDown' has an associated popup Menu object which
is named by its Popup property. There are two cases to consider.

If the ShowDropDown property of the parent ToolControl is 0, clicking the Tool-
Button causes the popup menu to appear. In this case, the ToolButton itself does not
itself generate a Select event; you must rely on the user selecting a MenuItem to spec-
ify a particular action.

If the ShowDropDown property of the parent ToolControl is 1, clicking the drop-
down button causes the popup menu to appear; clicking the ToolButton itself gen-
erates a Select event, but does not display the popup menu.

The following example illustrates the use of DropDown buttons.

'F'⎕WC'Form' 'ToolControl: Dropdown Buttons'('Size' 20 40)
'F.TB'⎕WC'ToolControl'('ShowDropDown' 1)

:With 'F.FMENU'⎕WC'Menu' ⍝ Popup File menu
'NEW'⎕WC'MenuItem' '&New'
'OPEN'⎕WC'MenuItem' '&Open'
'CLOSE'⎕WC'MenuItem' '&Close'

:EndWith

:With 'F.EMENU'⎕WC'Menu' ⍝ Popup File menu
'CUT'⎕WC'MenuItem' 'Cu&t'
'COPY'⎕WC'MenuItem' '&Copy'
'PASTE'⎕WC'MenuItem' '&Paste'

:EndWith

'F.TB.B1'⎕WC'ToolButton' 'File'('Style' 'DropDown')('Popup'
'F.FMENU')
'F.TB.B2'⎕WC'ToolButton' 'Edit'('Style' 'DropDown')('Popup'
'F.EMENU')

Chapter 2: A-Z Reference 569

ToolControl Object
Purpose: The ToolControl object provides a standard Windows ToolBar.

Parents ActiveXControl, CoolBand, Form, SubForm

Children Bitmap, BrowseBox, Button, Combo, ComboEx, Cursor, Edit,
FileBox, Font, Group, Icon, Image, ImageList, Label, List,
ListView, Locator, Menu, MenuBar, Metafile, MsgBox, OCXClass,
ProgressBar, RichEdit, Scroll, SM, Spinner, Static, SubForm, Timer,
ToolButton, TrackBar, TreeView, UpDown

Properties Type, Posn, Size, Style, Align, Visible, Event, ImageListObj,
FontObj, Data, Attach, Handle, KeepOnClose, MultiLine,
Transparent, Divider, ShowCaptions, ShowDropDown, Dockable,
UndocksToRoot, Redraw, ButtonsAcceptFocus, MethodList,
ChildList, EventList, PropList

Methods Detach, GetTextSize, Animate, GetFocus, ShowSIP

Events Close, Create, DragDrop, Configure, ContextMenu, DropFiles,
DropObjects, Expose, Help, MouseDown, MouseUp, MouseMove,
MouseDblClick, MouseEnter, MouseLeave, MouseWheel,
DockStart, DockMove, DockRequest, DockAccept, DockEnd,
DockCancel

Description

The ToolControl object provides an interface to the native Windows ToolBar control
and supersedes the Dyalog APL ToolBar object.

The tools on a ToolControl are normally represented by ToolButton objects, but the
ToolControl may also act as a parent for other objects, including a MenuBar (see
below).

Unlike the ToolBar, the ToolControl fully determines the positioning of its children
automatically and this is governed by their order of creation. The Posn property of
any child of a ToolControl is therefore read-only. Furthermore, the height of objects
in a ToolControl may be no greater than that of a ToolButton in the same Tool-
Control. This in turn is governed by the sizes of the FontObj and ImageList in use in
that ToolControl. ToolControl objects should be used in preference to ToolBar
objects.

If a ToolControl is the child of a Form, its position and orientation is defined by its
Align property. This property is ignored if the ToolControl is the child of a Cool-
Band.

Chapter 2: A-Z Reference 570

The overall appearance of the ToolButton objects displayed by the ToolControl is
defined by the Style property of the ToolControl itself, rather than by individual
ToolButtons. This may be 'Buttons', 'FlatButtons', 'List' or
'FlatList'.

'F'⎕WC'Form' 'ToolControl: FlatButtons Style (default)'
('Size' 10 40)
'F.TB'⎕WC'ToolControl'

'F.TB.IL'⎕WC'ImageList'('Masked' 0)
'F.TB.IL.'⎕WC'Bitmap'('Comctl32' 120)
'F.TB'⎕WS'ImageListObj' 'F.TB.IL'

'F.TB.B1'⎕WC'ToolButton' 'New'('ImageIndex' 7)
'F.TB.B2'⎕WC'ToolButton' 'Open'('ImageIndex' 8)
'F.TB.B3'⎕WC'ToolButton' 'Save'('ImageIndex' 9)

'F.TB'⎕WC'ToolControl'('Style' 'Buttons')

'F.TB'⎕WC'ToolControl'('Style' 'FlatList')

'F.TB'⎕WC'ToolControl'('Style' 'List')

Chapter 2: A-Z Reference 571

The presence or absence of a recessed line drawn above, below, to the left of, or to the
right of the ToolControl is controlled by the Divider property whose default is 1
(show divider).

The MultiLine property specifies whether or not ToolButtons (and other controls) are
arranged in several rows (or columns) when there are more than will otherwise fit. If
MultiLine is 0 (the default), the ToolControl object clips its childen and the user
must resize it to bring more objects into view.

'F'⎕WC'Form' 'ToolControl: MultiLine 0'('Size' 20 36)
'F.TB'⎕WC'ToolControl'('Style' 'List')

'F.TB.IL'⎕WC'ImageList'('Masked' 0)('Size' 24 24)
'F.TB.IL.'⎕WC'Bitmap'('ComCtl32' 121)⍝ STD_LARGE
'F.TB'⎕WS'ImageListObj' 'F.TB.IL'

'F.TB.B1'⎕WC'ToolButton' 'Cut'('ImageIndex' 1)
'F.TB.B2'⎕WC'ToolButton' 'Copy'('ImageIndex' 2)
'F.TB.B3'⎕WC'ToolButton' 'Paste'('ImageIndex' 3)
'F.TB.B4'⎕WC'ToolButton' 'Undo'('ImageIndex' 4)
'F.TB.B5'⎕WC'ToolButton' 'Redo'('ImageIndex' 5)
'F.TB.B6'⎕WC'ToolButton' 'Delete'('ImageIndex' 6)

'F.TB'⎕WC'ToolControl'('MultiLine' 1)('Style' 'List')

Chapter 2: A-Z Reference 572

The Transparent property specifies whether or not the ToolControl is transparent. If
so, the visual effect is as if the ToolButtons (and other controls) were drawn directly
on the parent Form as illustratedbelow .

'F'⎕WC'Form' 'ToolControl: Transparent 1)'('Size' 10 40)
'F.BM'⎕WC'Bitmap' 'C:\WINDOWS\WINLOGO'
'F'⎕WS'Picture' 'F.BM' 1

'F.TB'⎕WC'ToolControl'('Transparent' 1)('Style'
'FlatList')
'F.TB.IL'⎕WC'ImageList'('Masked' 0)('Size' 24 24)
'F.TB.IL.'⎕WC'Bitmap'('ComCtl32' 121)⍝ STD_LARGE
'F.TB'⎕WS'ImageListObj' 'F.TB.IL'

'F.TB.B1'⎕WC'ToolButton' 'New'('ImageIndex' 7)
'F.TB.B2'⎕WC'ToolButton' 'Open'('ImageIndex' 8)
'F.TB.B3'⎕WC'ToolButton' 'Save'('ImageIndex' 9)

The ShowCaptions property specifies whether or not the captions of ToolButton
objects are drawn. Its default value is 1 (draw captions). ToolButtons drawn without
captions occupy much less space and ShowCaptions provides a quick way to turn
captions on/off for user customisation.

The ShowDropDown property specifies whether or not a drop-down menu symbol is
drawn alongside ToolButtons which have Style'DropDown'. ShowDropDown
also affects the behaviour of such ToolButton objects when clicked.

The ButtonsAcceptFocus property determines how the ToolControl responds to rthe
Tab and cursor movement keys.

Chapter 2: A-Z Reference 573

As a special case, the ToolControl may contain a MenuBar as its only child. In this
case, Dyalog APL causes the menu items to be drawn as buttons as shown below.

Although nothing is done to prevent it, the use of other objects in a ToolControl con-
taining a MenuBar, is not supported.

'F'⎕WC'Form' 'ToolControl with MenuBar'('Size' 20 40)
'F.TB'⎕WC'ToolControl'

:With 'F.TB.MB'⎕WC'MenuBar'
:With 'File'⎕WC'Menu' 'File'

'New'⎕WC'MenuItem' 'New'
'Open'⎕WC'MenuItem' 'Open'
'Close'⎕WC'MenuItem' 'Close'

:EndWith

:With 'Edit'⎕WC'Menu' 'Edit'
'Cut'⎕WC'MenuItem' 'Cut'
'Copy'⎕WC'MenuItem' 'Copy'
'Paste'⎕WC'MenuItem' 'Paste'

:EndWith

:EndWith

Chapter 2: A-Z Reference 574

TrackBar Object
Purpose: The TrackBar object is a slider control that allows the user to enter

a value by positioning a pointer (thumb) on a scale.

Parents ActiveXControl, CoolBand, Form, Grid, Group, PropertyPage,
SubForm, ToolBar, ToolControl

Children Bitmap, Circle, Cursor, Ellipse, Font, Icon, Marker, Poly, Rect,
Text, Timer

Properties Type, Posn, Size, Style, Coord, Border, Active, Visible, Event,
Thumb, Step, VScroll, HScroll, Limits, SelRange, Sizeable,
Dragable, FontObj, BCol, CursorObj, AutoConf, Data, Attach,
EdgeStyle, Handle, Hint, HintObj, Tip, TipObj, Translate,
Accelerator, TickAlign, TickSpacing, HasTicks, ShowThumb,
TrackRect, ThumbRect, AcceptFiles, KeepOnClose, Redraw,
TabIndex, MethodList, ChildList, EventList, PropList

Methods Detach, GetTextSize, Animate, GetFocus, ShowSIP

Events Close, Create, DragDrop, Configure, ContextMenu, DropFiles,
DropObjects, Expose, Help, KeyPress, GotFocus, LostFocus,
MouseDown, MouseUp, MouseMove, Select, ThumbDrag, Scroll

Description

The TrackBar object consists of a window which contains a slider bar, a thumb, and a
set of tick marks. The slider in a TrackBar moves in increments that you specify when
you create it. For example, if you specify that the TrackBar should have a range of
five, the slider can only occupy six positions: a position at the left side of the Track-
Bar and one position for each increment in the range. Typically, each of these posi-
tions is identified by a tick mark. TrackBars can have either a vertical or horizontal
orientation. They can have tick marks on either side, both sides, or neither. A selec-
tion of different TrackBars is illustrated below.

Chapter 2: A-Z Reference 575

The position and size of the container window are defined by the Posn and Size prop-
erties. Its appearance is defined by the EdgeStyle, Border and BCol properties. The
defaults are ('EdgeStyle' 'None'), ('Border' 0) and ('BCol' 0). The
default background colour ('BCol' 0) obtains either the standard Window Back-
ground colour, or grey to match the colour of the parent object if it has a 3-dimen-
sional appearance.

The orientation of a TrackBar is determined by the HScroll and VScroll properties. A
horizontal TrackBar is obtained by setting HScroll to ¯1 and VScroll to 0. This is the
default. A vertical TrackBar is obtained by setting VScroll to ¯1 and HScroll to 0.

VScroll and HScroll may only be set when the object is created and may not sub-
sequently be changed.

The ShowThumb property determines whether or not the thumb is visible. Its default
value is 1. You may toggle this property dynamically using ⎕WS.

The TrackBar optionally displays tick marks at the two ends of the slider bar and
spaced out along it. This behaviour is determined by the HasTicks property which
may be 1 (the default) or 0 and may be set only when the object is created by ⎕WC.

Chapter 2: A-Z Reference 576

If HasTicks is 1, the position and frequency of the tick marks is determined by the
TickAlign and TickSpacing properties. Note that TickAlign may only be set when
the TrackBar is created with ⎕WC and may not be altered using ⎕WS.

The slider and tick marks in a horizontal TrackBar are drawn along the top of the
enclosing window. The slider and tick marks in a vertical TrackBar are drawn along
the left edge of the window. The position and size of the slider and the thumb may be
obtained from the TrackRect and ThumbRect properties which report these values in
pixels. These are read-only properties and cannot not be set with ⎕WC or ⎕WS.

The value of the TrackBar is determined by its Thumb property which is an integer
that may be set with ⎕WS or retrieved with ⎕WG. The Limits property specifies the
minimum and maximum values of Thumb corresponding to its position at the two
ends of the slider bar. The Step property is a 2-element integer vector defining the
small and large increments by which the Thumb moves. A small step is obtained by
pressing a cursor movement key; a large step is achieved by clicking the left mouse
button either side of the thumb or by pressing Page Up and Page Down. The user may
also drag the thumb to a new position or move it directly to either end of the slider by
pressing Home or End.

An alternative form of the TrackBar is obtained by setting the Style property to
'Selection'. This may only be done when the object is created using ⎕WC. This
style of TrackBar has a slider that is represented by a recessed thick white rectangle
instead of a solid black line. Furthermore, you can select a range of values within the
TrackBar by setting the SelRange property. This causes the TrackBar to display a
solid blue bar within the white slider and to show the corresponding tick marks as
small triangles. Note that there is no way for the user to change SelRange directly;
you can only do this using ⎕WS.

In addition to the normal mouse events, the TrackBar generates a Scroll and
ThumbDrag event. The Scroll event is the same event that is generated by a Scroll
object and is reported when the user repositions the thumb. If enabled, the
ThumbDrag event is reported continuously as the user drags the thumb with the
mouse and may be used to synchronise the display of a corresponding value in
another object.

Chapter 2: A-Z Reference 577

TrackRect Property
Applies To: TrackBar

Description

TrackRect is a read-only property that reports the position and size of the bounding
rectangle of the slider in a TrackBar object. It is a 4-element integer vector con-
taining:

[1] Vertical position of the top-left corner of the bounding rectangle

[2] Horizontal position of the top-left corner of the bounding rectangle

[3] Height of the bounding rectangle

[4] Width of the bounding rectangle

Translate Property
Applies To: ActiveXControl, Animation, Bitmap, BrowseBox, Button,

ButtonEdit, Clipboard, ColorButton, Combo, ComboEx,
DateTimePicker, Edit, Form, Grid, Group, ImageList, Label, List,
ListView, MDIClient, Menu, MenuBar, MenuItem, Metafile,
OCXClass, Printer, ProgressBar, PropertyPage, PropertySheet,
RichEdit, Root, Scroll, Separator, Spinner, Static, StatusBar,
StatusField, SubForm, SysTrayItem, TabBar, TabBtn, Text,
TipField, ToolBar, TrackBar, TreeView, UpDown

Description

This property applies to the Classic Edition only. In the Unicode Edition, its value is
ignored.

This property specifies whether or not character data is to be translated. Translate is a
character vector whose values may be 'Inherit', 'Translate', 'ANSI'or
'None'.

A value of 'Translate'means that all character property values and event param-
eters are translated to and from ⎕AVusing the current output translation table
(WIN.DOT).

Chapter 2: A-Z Reference 578

'None'means that character data is passed between APL and the object with no
translation.

If you set the value of the Translate property to 'ANSI', APL does not attempt to
resolve characters as they are typed by the user via the Input Translate Table. Using
Translate 'ANSI'in combination with the appropriate value of CharSet and the cor-
responding National Language keyboard, will permit users to enter strings in non-
western languages.

'Inherit'means that the object inherits its translation from its parent.

The default value for the Root and Printer objects is 'Translate', and for most
other objects it is 'Inherit'.

Transparent Property
Applies To: Animation, ButtonEdit, ToolControl

Description

The Transparent property specifies whether or not a ToolControl is transparent.

Transparent is a single number with the value 0 (the default) or 1.

If Transparent is 1, the visual effect is as if the ToolButtons (and other controls
owned by the ToolControl) were drawn directly on the parent Form as illustrated
below.

Chapter 2: A-Z Reference 579

TreeView Object
Purpose: The TreeView object displays a hierarchical list of items.

Parents ActiveXControl, CoolBand, Form, Group, PropertyPage, SubForm,
ToolBar, ToolControl

Children Bitmap, Circle, Cursor, Ellipse, Font, Icon, ImageList, Marker, Poly,
Rect, Text, Timer

Properties Type, Items, Posn, Size, Coord, Border, Active, Visible, Event,
Depth, HasLines, HasButtons, EditLabels, ImageListObj,
ImageIndex, SelImageIndex, SelItems, Sizeable, Dragable, FontObj,
FCol, BCol, CursorObj, AutoConf, Index, Data, Attach, EdgeStyle,
Handle, Hint, HintObj, Tip, TipObj, Translate, Accelerator,
AcceptFiles, KeepOnClose, CheckBoxes, FullRowSelect,
SingleClickExpand, Redraw, TabIndex, AlwaysShowSelection,
MethodList, ChildList, EventList, PropList

Methods Detach, ChooseFont, GetItemState, SetItemState, AddItems,
DeleteItems, AddChildren, DeleteChildren, GetParentItem,
GetItemHandle, SetItemImage, ShowItem, GetTextSize, Animate,
GetFocus, ShowSIP

Events Close, Create, FontOK, FontCancel, DragDrop, Configure,
ContextMenu, DropFiles, DropObjects, Expose, Help, KeyPress,
GotFocus, LostFocus, MouseDown, MouseUp, MouseMove,
MouseDblClick, MouseEnter, MouseLeave, MouseWheel,
BeginEditLabel, EndEditLabel, Expanding, Retracting, ItemDown,
ItemUp, ItemDblClick, GetTipText, Select

Description

A TreeView object displays a hierarchical list of items, such as the headings in a doc-
ument, the entries in an index, or the files and directories on a disk. Each item con-
sists of a label and an optional bitmapped image, and each item can have a list of sub-
items associated with it. By clicking an item, the user can expand and collapse the
associated list of sub-items.

The contents of a TreeView object are defined by the Items property; a vector of char-
acter vectors that specifies the item labels.

Chapter 2: A-Z Reference 580

The ImageListObj, ImageIndex and SelImageIndex properties define bitmapped
images corresponding to each item. The bitmapped images are drawn to the left of the
item labels.

ImageListObj specifies the name of a single ImageList object that contains one or
more bitmaps

ImageIndex and SelImageIndex are ⎕IO sensitive scalars, or vectors with the same
length as the number of items in the object. The value in the ith element specifies the
image for the ith item and is an index into the corresponding ImageList object.
ImageIndex specifies the image displayed when an item is not selected, Sel-
ImageIndex specifies the image displayed when an item is selected.

If ImageListObj is specified, but ImageIndex is empty or not specified, the first bit-
map in the ImageList is drawn alongside every item. If an element of ImageIndex or
SelImageIndex specifies a value that does not correspond to a bitmap in the ImageL-
ist, no picture is drawn.

The structure of the items (i.e. the parent/child relationships of the items) is defined
by the Depth property. This is either a scalar 0 (the default) which means that all
items are root items, or it is a numeric vector of the same length as Items. Non-zero
values in Depth indicate child items.

The HasLines property is 0, 1 or 2 and determines whether or not lines are drawn that
link child items to their corresponding parent item. If HasLines is 0, no lines are
drawn. If HasLines is 1, lines are drawn at all except the top level, i.e. the object does
not link items at the root of the hierarchy. The default value for HasLines is 2 which
provides lines at all levels including the root.

The HasButtons property determines whether or not the TreeView object has a but-
ton to the left side of each parent item. It is boolean with a default value of 1. The
user can click the button to expand or collapse the child items as an alternative to
double-clicking the parent item. Note that by itself, setting HasButtons to 1 does not
add buttons to items at the root of the hierarchy. To achieve this you must also set
HasLines to 2.

The CheckBoxes property specifies whether or not check boxes are displayed along-
side items in a TreeView.

The FullRowSelect property specifies whether just the item itself, or the entire row of
the TreeView, is highlighted when an item is selected. FullRowSelect should not be
used if HasLines is 1 or 2

Chapter 2: A-Z Reference 581

When the user presses the left mouse button over an item, the object generates an
ItemDown event. This is followed by an ItemUp event when the mouse button is
released. The object also generates an ItemDblClick event when the left mouse is dou-
ble-clicked over an item. If all three events are enabled, they are reported in the order
ItemDown, ItemDblClick, ItemUp.

When a parent item is in its retracted state (its children are not visible) it can be
expanded to show its children by the user double-clicking its label or by clicking
over its button or tree lines. An Expanding event is reported immediately before the
children are shown. Similarly, when a parent item is in its expanded state, it can be
retracted to hide its children when a Retracting event is reported. You can use the
Expanding event to define new children for the object just before they are shown.
You can also control the actions of these events using callback functions.

The EditLabels is a boolean property (default 0) that determines whether or not the
user may edit the labels which are specified by the Items property.

The SelItems property is a boolean vector that indicates which of the items is cur-
rently selected and has the focus. If more items are visible than can fit within the
object, a scrollbar is automatically provided. The Index property is a ⎕IO sensitive
integer that reports the index number of the first item displayed in the object and
changes as the items are scrolled.

Warning:Due to the limitations of the Win32 TreeView object, it is necessary to
query the state of each item in a TreeViewin order to obtain the value of the SelItems
property, making it a comparatively slow operation if there are a lot of Items.

Type Property
Applies To: ActiveXContainer, ActiveXControl, Animation, Bitmap,

BrowseBox, Button, ButtonEdit, Calendar, Circle, Clipboard,
ColorButton, Combo, ComboEx, CoolBand, CoolBar, Cursor,
DateTimePicker, Edit, Ellipse, FileBox, Font, Form, Grid, Group,
Icon, Image, ImageList, Label, List, ListView, Locator, Marker,
MDIClient, Menu, MenuBar, MenuItem, Metafile, MsgBox,
OCXClass, OLEClient, OLEServer, Poly, Printer, ProgressBar,
PropertyPage, PropertySheet, Rect, RichEdit, Root, Scroll,
Separator, SM, Spinner, Splitter, Static, StatusBar, StatusField,
SubForm, SysTrayItem, TabBar, TabBtn, TabButton, TabControl,
TCPSocket, Text, Timer, TipField, ToolBar, ToolButton,
ToolControl, TrackBar, TreeView, UpDown

Chapter 2: A-Z Reference 582

Description

This property determines the type of an object. Its value is a character vector con-
taining a valid object type. The Type property is set by ⎕WC and reported by ⎕WG,
but may not be altered using ⎕WS.

TypeLibFile Property
Applies To: ActiveXControl, OLEServer

Description

The TypeLibFile property is a read-only property that reports the name of the file in
which the Type Library associated with a COM object is stored.

TypeLibID Property
Applies To: ActiveXControl, OLEServer

Description

The TypeLibID property is a read-only property that reports the value of the globally
unique identifier (GUID) of the Type Library associated with a COM object.

TypeList Property
Applies To: OCXClass, OLEClient

Description

This property reports the names of all the special data types defined for a particular
COM object. It is a vector of character vectors returned by ⎕WG. It may not be set
using ⎕WC or ⎕WS. Further information about each data type may be obtained using
GetTYpeInfo.

Note that TypeList reports all of the data type names recorded in the .OCX file asso-
ciated with the COM object. If several COM objects are provided within a single
.OCX file, the entire set of data types reported may not necessarily be applicable to
the Control in question.

Chapter 2: A-Z Reference 583

Underline Property
Applies To: Font

Description

This property specifies whether or not the characters in the font associated with a
Font object are underlined or not. It is either 0 (normal) or 1 (underlined). There is no
default; the value of this property reflects the underline characteristic of the font allo-
cated by Windows.

Undo Method 170
Applies To: Grid

Description

This method is used to undo the previous change in a Grid object.

The Grid object maintains a buffer of the most recent 8 changes made by the user
since the Values property was last set by ⎕WC or ⎕WS.

Your application can restore these changes one by one by calling the Undo method
on the Grid. The Undo method restores the most recent change made by the user and
removes that change from the undo stack.

It is therefore not possible to "undo an undo".

The argument to Undo is ⍬, or a single item as follows :

[1] Number of changes integer

If called with an argument of ⍬, the default value for the Number of changes is 1.
This restores the most recent change.

UndocksToRoot Property
Applies To: CoolBand, Form, SubForm, ToolControl

Description

Specifies the parent adopted by an object when its Type changes to a Form as a result
of an undocking operation.

Chapter 2: A-Z Reference 584

UndocksToRoot is a single number with the value 0 or 1.

If UndocksToRoot is 1, the object becomes a Form that is a child of Root and there-
fore becomes completely independent of the Form in which it was previously
docked.

If UndocksToRoot is 0, the object becomes a Form that is a child of the Form in
which it was previously docked and is therefore always displayed on top of it. This
setting is appropriate for a dockable toolbar.

The default value of UndocksToRoot is 1 if the object was originally created as a
child of Root; otherwise it is 0.

UpDown Object
Purpose: The UpDown object is a pair of arrow buttons used to increment or

decrement a value.

Parents ActiveXControl, CoolBand, Form, Group, PropertyPage, SubForm,
ToolBar, ToolControl

Children Bitmap, Circle, Cursor, Ellipse, Font, Icon, Marker, Poly, Rect,
Text, Timer

Properties Type, Posn, Size, Coord, Border, Active, Visible, Event, Thumb,
Step, VScroll, HScroll, Wrap, Limits, Sizeable, Dragable, FCol,
BCol, CursorObj, AutoConf, Data, Attach, EdgeStyle, Handle,
Hint, HintObj, Tip, TipObj, Translate, Accelerator, AcceptFiles,
KeepOnClose, Redraw, TabIndex, MethodList, ChildList,
EventList, PropList

Methods Detach, GetTextSize, Animate, GetFocus, ShowSIP

Events Close, Create, DragDrop, Configure, ContextMenu, DropFiles,
DropObjects, Expose, Help, MouseDown, MouseUp, MouseMove,
MouseEnter, MouseLeave, Select, Spin

Description

An UpDown object is a pair of arrow buttons that the user can click to increment or
decrement a value, such as a scroll position or a number displayed in a companion
control. The Spinner object is actually a composite object consisting of an UpDown
and a companion Edit.

Chapter 2: A-Z Reference 585

UpperCase Property
Applies To: Root

Description

This property specifies whether or not property names returned by ⎕WG and event
names supplied by ⎕DQ and ⎕NQ are converted to uppercase or not. It is a boolean
property where 1 means convert to upper case and 0 means not. The default is 0. For
example :

'.' ⎕WG 'Type'

Root

'.' ⎕WS 'UpperCase' 1
'.' ⎕WG 'Type'

ROOT

In Dyalog APL Version 6, property names were always reported in upper case. This
was changed in Version 7. The UpperCase property is provided to enable appli-
cations developed prior to Dyalog APL/W Version 7 to function with minimal alter-
ation.

ValidIfEmpty Property
Applies To: ButtonEdit, Edit, Spinner

Description

This property applies to an Edit object with Style Single and specifies whether or not
an empty field is considered to be valid. It also applies to a Spinner. Its value is either
0 (an empty field is not valid) or 1 (an empty field is valid. If the FieldType is
Numeric, LongNumeric, Currency, Date or Time, the default value for ValidIfEmpty
is 0. Otherwise, its default value is 1.

If ValidIfEmpty is 0 and the user attempts to leave the Edit object by shifting the
input focus to another control, or by selecting a Button orMenuItem, the Edit object
will generate a BadValue event. The Text property will reflect the appearance of the
field and be empty, but the Value property will not be changed.

If ValidIfEmpty is 1 and the FieldType is Numeric, LongNumeric, Currency, date or
Time, the Value property will be set to ⍬ when the user clears the field and leaves it.

Chapter 2: A-Z Reference 586

VAlign Property
Applies To: Text

Description

This property determines the vertical alignment of text in the Text object. It is either
a single integer value, or, if the Text object has several components, a corresponding
vector of such values.

These may be :

0 base
aligned

the base line of the character is aligned on the y-coordinate
specified by the Points property.

1 half
aligned

the centre of the character is aligned on the y-coordinate
specified by the Points property.

2 cap
aligned

the top of the character is aligned on the y-coordinate specified
by the Points property.

3 bottom
aligned

the bottom of the character cell is aligned on the y-coordinate
specified by the Points property.

4 top
aligned

the top of the character cell is aligned on the y-coordinate
specified by the Points property. This is the default.

Value Property
Applies To: ButtonEdit, Edit, Label, Spinner

Description

This property specifies or reports the numeric value associated with an Edit or Label
object whose FieldType property is set to Numeric, LongNumeric, Date, LongDate
or Time.

If the FieldType is Numeric or LongNumeric, the Value property contains a scalar
number. If the FieldType is Date or LongDate, the Value property is an integer rep-
resenting the date as the number of days since 1st January 1900. If the FieldType is
Time, the Value property is an integer that contains the number of seconds since mid-
night.

Chapter 2: A-Z Reference 587

Values Property
Applies To: Grid

Description

This property specifies the data values for the cells in a Grid object. Values must be a
matrix whose elements are either single numbers, character scalars, character vectors
or character matrices. This property is updated as the user moves around the Grid
changing data.

VariableHeight Property
Applies To: CoolBar

Description

The VariableHeight property specifies whether or not a CoolBar displays bands at
the minimum required height, or all the same height (that of the largest).

VariableHeight is a single number with the value 0 (same height) or 1 (variable
height). The default is 1.

View Property
Applies To: ListView

Description

The View property specifies how the items in a ListView object are displayed. It is a
character vector which may have one of the following values; 'Icon' (the default),
'SmallIcon', 'List' or 'Report'.

When View is 'Icon' or 'SmallIcon', the items are arranged row-wise with
large or small icons as appropriate. When View is set to 'List', the items are
arranged column-wise using small icons. When View is set to 'Report', the items
are displayed in a single column using small icons but with the matrix specified by
ReportInfo displayed alongside. In this format, the ListView also provides column
headings which are specified by the ColTitles property. The alignment of these titles
(and of the data in the columns beneath them) is defined by the ColTitleAlign prop-
erty. Examples of different views are illustrated below.

Chapter 2: A-Z Reference 588

Chapter 2: A-Z Reference 589

Visible Property
Applies To: ActiveXControl, Animation, Button, ButtonEdit, Calendar, Circle,

ColorButton, Combo, ComboEx, CoolBand, DateTimePicker, Edit,
Ellipse, Form, Grid, Group, Image, Label, List, ListView, Marker,
MenuBar, Poly, ProgressBar, PropertySheet, Rect, RichEdit, Scroll,
SM, Spinner, Splitter, Static, StatusBar, StatusField, SubForm,
TabBar, TabBtn, TabControl, Text, ToolBar, ToolButton,
ToolControl, TrackBar, TreeView, UpDown

Description

This property specifies whether or not an object is currently visible. It is a single
number with the value 0 (object is invisible) or 1 (object is visible). The default is 1.
Setting Visible on and off is a way to pop a dialog box up and down as required.

Note that an invisible object is not necessarily inactive, and is capable of generating
events. For example, a Button with a Cancel property of 1 will generate a Select (30)
event (if enabled) whether or not it is visible. An invisible object will also respond to
methods and events sent to it by ⎕NQ.

Chapter 2: A-Z Reference 590

VScroll Property
Applies To: Combo, ComboEx, Edit, Form, Grid, List, ListView, RichEdit,

Scroll, StatusBar, SubForm, TabBar, ToolBar, TrackBar, UpDown

Description

This property determines whether or not an object has a vertical scrollbar. It is a sin-
gle integer with the value ¯2, ¯1, or 0.

VScroll may only be set when the object is created with ⎕WC andmay not sub-
sequently be changed with ⎕WS or assignment.

For a Form object, the value ¯1 specifies that the Form has a vertical scrollbar. A
value of 0 (which is the default) means that it does not.

When applied to an Edit object, the value ¯2 specifies that the data is scrollable ver-
tically, but only by using the cursor keys; a scrollbar is not provided. A value of ¯1
causes a scrollbar to be displayed (whether or not one is needed).

When applied to a List object, the value ¯2 specifies that the data is scrollable ver-
tically, but only by using the cursor keys; a scrollbar is not provided. A value of ¯1
causes a scrollbar to be displayed if required (when the list of items exceeds the
height of the object).

When applied to a Combo or ComboEx object, a value of ¯1 or ¯2 causes a scrollbar
to be displayed, whether or not one is required.

For all these objects, a value of 0 inhibits scrolling altogether.

For a Scroll object, VScroll may be ¯1 or 0. If it is ¯1 the direction of the scrollbar is
vertical. If both HScroll and VScroll are set to ¯1, HScroll takes precedence and
forces VScroll back to 0.

For a StatusBar, TabBar or ToolBar with Align set to Left or Right, VScroll deter-
mines whether or not a vertical scrollbar is provided and how the object positions its
children. If VScroll is 0 (the default) the object organises its children in multiple col-
umns and does not provide a scrollbar. If VScroll is ¯1 or ¯2, the object organises its
children in a single column and provides a mini scrollbar to allow those positioned
beyond the bottom edge of the object to be scrolled into view. If VScroll is ¯1, the
scrollbar is always shown. If VScroll is ¯2, it is only shown when needed.

For a Grid, VScroll may be 0 (no vertical scrollbar), ¯1 (scrollbar is displayed when
required), ¯2 (same as ¯1) or ¯3 (scrollbar is always displayed).

Chapter 2: A-Z Reference 591

VScroll Event 38
Applies To: Form, SubForm

Description

If enabled, this event is generated when the user attempts to move the thumb in a ver-
tical scrollbar in a Form or SubForm. This event occurs only in a Form whose VScroll
property is set to ¯1 and is distinct from the Scroll event which is generated by a
Scroll object. The event may be generated in one of three ways :

1. dragging the thumb
2. clicking in one of the "arrow" buttons situated at the ends of the scrollbar.

This is termed a small change, the size of which is defined by Step[1].
3. clicking in the body of the scrollbar. This is termed a large change, the size

of which is defined by Step[2].

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 4-element vector as follows :

[1] Object ref or character vector

[2] Event 'VScroll' or 38

[3] Scroll Type numeric

[4] Position numeric

The value of Scroll Type is 0 (drag), 1 or ¯1 (small change) or 2 or ¯2 (large change).
The sign indicates the direction.

The value of Position is the new (requested) position of the thumb. Notice however
that the event is generated before the thumb is actually moved. If your callback func-
tion returns a scalar 0, the position of the thumb will remain unaltered.

Chapter 2: A-Z Reference 592

VThumbDrag Event 441
Applies To: Form, SubForm

Description

If enabled, this event is generated when the user attempts to drag the thumb in a ver-
tical scrollbar in a Form or SubForm. This event occurs only in a Form or SubForm
whose HScroll property is set to ¯1 and is distinct from the Scroll event that is gen-
erated by a Scroll object.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 3-element vector as follows:

[1] Object ref or character vector

[2] Event 'VThumbDrag' or 441

[3] Position numeric

The value of Position is the new (requested) position of the Thumb. Setting the
action code of this event to ¯1, or returning a 0 from a callback function attached to
it, has no effect.

Chapter 2: A-Z Reference 593

Wait Method 147
Applies To: BrowseBox, Clipboard, FileBox, Form, Locator, Menu, MsgBox,

PropertySheet, Root, SysTrayItem, TCPSocket, Timer

Description

The Wait method is the same as executing ⎕DQ on the object.

The Wait method is niladic.

'F'⎕WC'Form'
...

Z←F.Wait

WantsReturn Property
Applies To: Edit, RichEdit

Description

This boolean property specifies the behaviour of the Enter key for a multi-line Edit
(Style 'Multi') and a RichEdit object.

A value of 0 means that the Enter key is ignored by the Edit or RichEdit. Instead, the
Enter key will (if appropriate) cause a Select event on a Button in the same Form. The
user must press Ctrl+Enter to input a new line.

A value of 1 means that pressing the Enter key will introduce a new line into the
object.

WantsReturn must be established when the object is created by ⎕WC and may not sub-
sequently be altered using ⎕WS. Its default value is 0 in an Edit and 1 in a RichEdit.

WeekNumbers Property
Applies To: Calendar, DateTimePicker

Description

The WeekNumbers property specifies whether or not a Calendar object displays
week numbers.

WeekNumbers is a single number with the value 0 (week numbers are not shown) or
1 (week numbers are shown); the default is 0.

Chapter 2: A-Z Reference 594

Weight Property
Applies To: Font

Description

This property specifies the degree of boldness of a font associated with a Font object.
It is a number in the range 0 to 1000, where 0 represents very faint and 1000 rep-
resents very bold. There is no default; the value of this property reflects the degree of
boldness of the font allocated by Windows.

In general, 400 means normal and 700 means bold.

WinIniChange Event 133
Applies To: Root

Description

If enabled, this event is reported when another application changes relevant registry
settings using the standard API calls. The event is reported after the change has taken
place and cannot be disabled or inhibited in any way. If your application depends
upon registry settings, this event gives you the opportunity of refreshing these param-
eters if they are changed.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 2-element vector as follows :

[1] Object ref or character vector

[2] Event 'WinIniChange' or 133

WordFormat Property
Applies To: RichEdit

Description

The WordFormat property is identical to the CharFormat property except that it is
used to apply formatting to the selected word or words in a RichEdit object. If the
selection is empty but the insertion point is inside a word, the formatting is applied
to the word. See CharFormat for further details.

Chapter 2: A-Z Reference 595

Wrap Property
Applies To: ListView, ProgressBar, Spinner, UpDown

Description

The Wrap property is boolean and has a default value of 1.

For a ListView it specifies whether or not long labels (specified by the Items prop-
erty) may be wrapped or not.

For a ProgressBar object it determines whether or not the object starts over again
when it reaches its upper limit. In particular, if Wrap is 1, the value obtained when
you set the Thumb property is given by the expression: LIMITS[1]
+THUMB|LIMITS[2] where THUMB is the value to which you set the Thumb prop-
erty and LIMITS is the value of the Limits property.

For a Spinner , Wrap determines what happens when the value in the Spinner reaches
its upper or lower limit. If Wrap is 1 the Spinner will wrap around to its opposite
limit. Otherwise it will stick.

Chapter 2: A-Z Reference 596

XRange Property
Applies To: ActiveXControl, Bitmap, Form, Grid, Group, MDIClient, Metafile,

Printer, Root, Static, StatusBar, SubForm, TabBar, ToolBar

Description

XRange and YRange together determine a user-defined co-ordinate system. These
properties are effective on the object's children which have Coord set to 'User'.

XRange is a 2-element numeric vector containing the x-coordinate of the top left and
bottom right interior corners of the object respectively. See Coord for further details.

Yield Property
Applies To: Root

Description

This property specifies the frequency with which APL yields to Windows and
applies mainly to Version 7. Multi-tasking in Windows 3.x is implemented by task
switching between applications whenever any application requests a message from
the queue. An application that is purely performing computational or file-handling
tasks will therefore prevent all other applications from running. Well-behaved Win-
dows applications should yield control by requesting a message periodically even
though no user interaction is currently taking place. However, this operation takes a
perceptible length of time, even if no other applications are running.

By default, Dyalog APL/W yields control to Windows approximately every 1/5th of
a second. This is implemented by checking the time at the beginning of each line of
executable APL code and yielding if 1/5th of a second or more has elapsed since the
last yield. This mechanism also allows APL to detect user interrupts (which are
simply Windows messages) during the execution of code.

In most circumstances yielding every 1/5th of a second produces "good"Windows
behaviour with little impact on APL throughput. However, in some cases it may be
beneficial to use the Yield property to explicitly control the yield frequency. An
example is in an application that takes an appreciable time to redraw an existing
graphical picture. If APL yields before the entire picture has been redrawn, some
objects will be erased before others are redrawn, causing a flickering effect.

Chapter 2: A-Z Reference 597

The value of Yield is an integer expressed in 1/1000's of a second. Its default value is
200. Yield defines the period of time allowed to elapse between the execution of suc-
cessive lines of APL code before APL yields to Windows by requesting a message
from the Windows queue. If Yield is set to zero APL does not explicitly yield.

Note that the value of this property only controls the yield frequency when APL is
executing user-defined code. APL may also yield implicitly during ⎕DQ, ⎕NQ, ⎕WC,
⎕SR, ⎕WS and ⎕WG and in communicating with Auxiliary processors. Note that set-
ting Yield to 0 (or to a very high value) during the execution of code that does not
implicitly yield will effectively de-activate all other applications (including Program
manager) and disable APL interrupts (Ctrl+Break). It should therefore be used with
extreme caution.

YRange Property
Applies To: ActiveXControl, Bitmap, Form, Grid, Group, MDIClient, Metafile,

Printer, Root, Static, StatusBar, SubForm, TabBar, ToolBar

Description

XRange and YRange together determine a user-defined co-ordinate system. These
properties are effective on the object's children which have Coord set to 'User'.

YRange is a 2-element numeric vector containing the y-coordinate of the top left and
bottom right interior corners of the object respectively. See Coord for further details.

Chapter 2: A-Z Reference 598

	Chapter 1: Introduction
	Objects Categorised
	Objects A-Z
	Properties A-Z
	Events A-Z
	Methods A-Z
	Native Look and Feel

	Chapter 2: A-Z Reference
	Abort
	Accelerator
	AcceptFiles
	ActivateApp
	Active
	ActiveXContainer
	ActiveXControl
	AddChildren
	AddCol
	AddComment
	AddItems
	AddRow
	Align
	AlignChar
	AlphaBlend
	AlwaysShowBorder
	AlwaysShowSelection
	AmbientChanged
	Animate
	Animation
	AnimClose
	AnimOpen
	AnimPlay
	AnimStarted
	AnimStop
	AnimStopped
	APLVersion
	ArcMode
	Array
	Attach
	AutoArrange
	AutoBrowse
	AutoConf
	AutoExpand
	AutoPlay
	BadValue
	BalloonHide
	BalloonShow
	BalloonTimeout
	BalloonUserClick
	BandBorders
	BaseClass
	BCol
	BeginEditLabel
	Bitmap
	Bits
	Border
	Browse
	BrowseBox
	BrowseFor
	BtnPix
	Btns
	Button
	ButtonEdit
	ButtonsAcceptFocus
	Calendar
	CalendarCols
	CalendarDblClick
	CalendarDown
	CalendarMove
	CalendarUp
	Cancel
	CancelToClose
	Caption
	CaseSensitive
	CBits
	CellChange
	CellChanged
	CellDblClick
	CellDown
	CellError
	CellFonts
	CellFromPoint
	CellHeights
	CellMove
	CellOver
	CellSelect
	CellSet
	CellTypes
	CellUp
	CellWidths
	Change
	Changed
	CharFormat
	CharSet
	CheckBoxes
	Checked
	ChildEdge
	ChildList
	ChooseFont
	Circle
	CircleToday
	ClassID
	ClassName
	ClickComment
	Clipboard
	ClipCells
	ClipChange
	Close
	CloseUp
	CMap
	ColChange
	Collate
	ColLineTypes
	ColorButton
	ColorChange
	ColorMode
	ColSorted
	ColSortImages
	ColTitle3D
	ColTitleAlign
	ColTitleBCol
	ColTitleDepth
	ColTitleFCol
	ColTitles
	ColumnClick
	ColumnWidth
	Combo
	ComboEx
	Configure
	Container
	ContextMenu
	CoolBand
	CoolBar
	Coord
	Copies
	Create
	Cue
	CurCell
	CurrentColor
	CurrentState
	Cursor
	CursorObj
	CustomColors
	CustomFormat
	Data
	DateTime
	DateTimeChange
	DateTimePicker
	DateToIDN
	DblClickToggle
	DDE
	Decimals
	Default
	DefaultColors
	DelCol
	DelComment
	DeleteChildren
	DeleteItems
	DeleteTypeLib
	DelRow
	Depth
	Detach
	DevCaps
	Directory
	DisplayChange
	Divider
	Dockable
	DockAccept
	DockCancel
	DockChildren
	Docked
	DockEnd
	DockMove
	DockRequest
	DockShowCaption
	DockStart
	Dragable
	DragDrop
	DragItems
	DrawMode
	DropDown
	DropFiles
	DropObjects
	Duplex
	DuplicateColumn
	DuplicateRow
	DyalogCustomMessage1
	EdgeStyle
	Edit
	EditImage
	EditImageIndent
	EditLabels
	Elevated
	Ellipse
	Encoding
	End
	EndEditLabel
	EndSplit
	EnterReadOnlyCells
	EvaluationDays
	Event
	EventList
	ExitApp
	ExitWindows
	Expanding
	ExportedFns
	ExportedVars
	Expose
	FCol
	FieldType
	File
	FileBox
	FileBoxCancel
	FileBoxOk
	FileMode
	FileRead
	FileWrite
	FillCol
	Filters
	FirstDay
	Fixed
	FixedOrder
	FlatSeparators
	Flush
	Font
	FontCancel
	FontList
	FontObj
	FontOK
	Form
	Formats
	FormatString
	FrameContextMenu
	FStyle
	FullRowSelect
	GetBuildID
	GetCellRect
	GetCommandLine
	GetCommandLineArgs
	GetComment
	GetDayStates
	GetEnvironment
	GetEventInfo
	GetFocus
	GetItemHandle
	GetItemPosition
	GetItemState
	GetMethodInfo
	GetMinSize
	GetParentItem
	GetPropertyInfo
	GetTextSize
	GetTipText
	GetTypeInfo
	GetVisibleRange
	GotFocus
	GreetBitmap
	Grid
	GridBCol
	GridCopy
	GridCopyError
	GridCut
	GridDelete
	GridDropSel
	GridFCol
	GridKeyPress
	GridLineFCol
	GridLines
	GridLineWidth
	GridPaste
	GridPasteError
	GridSelect
	GripperMode
	Group
	HAlign
	Handle
	HasApply
	HasButtons
	HasCheckBox
	HasEdit
	HasHelp
	HasLines
	HasTicks
	HasToday
	Header
	HeaderImageIndex
	HeaderImageList
	Help
	HelpButton
	HelpFile
	HideComment
	HighlightHeaders
	Hint
	HintObj
	HotSpot
	HotTrack
	HScroll
	HScroll
	HThumbDrag
	Icon
	IconObj
	Idle
	IDNToDate
	Image
	ImageCount
	ImageIndex
	ImageList
	ImageListObj
	Indents
	Index
	IndexChanged
	Input
	InputMode
	InputModeKey
	InputProperties
	InstanceMode
	Interval
	Italic
	ItemDblClick
	ItemDown
	ItemGroupMetrics
	ItemGroups
	Items
	ItemUp
	Justify
	KeepBits
	KeepOnClose
	KeyError
	KeyPress
	Label
	LastError
	LicenseKey
	Limits
	List
	ListTypeLibs
	ListView
	LocalAddr
	LocalAddrName
	Locale
	LocalPort
	LocalPortName
	Locator
	Locator
	LockColumns
	LockRows
	LostFocus
	LStyle
	LWidth
	MakeGIF
	MakePNG
	MapCols
	Marker
	Mask
	MaskCol
	Masked
	MaxButton
	MaxDate
	MaxLength
	MaxSelCount
	MDIActivate
	MDIActive
	MDIActiveObject
	MDIArrange
	MDICascade
	MDIClient
	MDIDeactivate
	MDIMenu
	MDITile
	Menu
	MenuBar
	MenuItem
	Metafile
	MetafileObj
	MethodList
	MinButton
	MinDate
	MonthDelta
	MouseDblClick
	MouseDown
	MouseEnter
	MouseLeave
	MouseMove
	MouseUp
	MouseWheel
	Moveable
	MsgBox
	MsgBtn1
	MsgBtn2
	MsgBtn3
	MultiColumn
	MultiLine
	MultiSelect
	NameFromHandle
	NetClient
	NetType
	NewLine
	NewPage
	Note
	OCXClass
	OKButton
	OLEAddEventSink
	OLEClient
	OLEControls
	OLEDeleteEventSink
	OLEListEventSinks
	OLEQueryInterface
	OLERegister
	OLEServer
	OLEServers
	OLEUnregister
	OnTop
	Orientation
	OtherButton
	OverflowChar
	PageActivate
	PageActive
	PageActiveObject
	PageApply
	PageBack
	PageCancel
	PageChanged
	PageDeactivate
	PageFinish
	PageHelp
	PageNext
	PageSize
	PageWidth
	PaperSize
	PaperSizes
	PaperSource
	PaperSources
	ParaFormat
	Password
	PathWordBreak
	Picture
	PName
	Points
	Poly
	Popup
	Posn
	PreCreate
	Print
	Printer
	PrintList
	PrintRange
	ProgressBar
	ProgressStep
	ProgressStyle
	PropertyPage
	PropertySheet
	PropList
	Protected
	QueueEvents
	Radius
	RadiusMode
	Range
	ReadOnly
	RealSize
	Rect
	Redraw
	RemoteAddr
	RemoteAddrName
	RemotePort
	RemotePortName
	ReportBCol
	ReportImageIndex
	ReportInfo
	ResizeCols
	ResizeColTitles
	ResizeRows
	ResizeRowTitles
	Resolution
	Resolutions
	Retracting
	RichEdit
	Root
	Rotate
	RowChange
	RowHiddenDepth
	RowLineTypes
	Rows
	RowSetVisibleDepth
	RowTitleAlign
	RowTitleBCol
	RowTitleDepth
	RowTitleFCol
	RowTitles
	RowTreeDepth
	RowTreeImages
	RowTreeStyle
	RTFPrint
	RTFPrintSetup
	RTFText
	RunMode
	Scroll
	Scroll
	ScrollOpposite
	SelDate
	SelDateChange
	Select
	SelectionBorderWidth
	SelectionColor
	SelectionColorAlpha
	SelImageIndex
	SelItems
	SelRange
	SelText
	Separator
	ServerVersion
	SetCellSet
	SetCellType
	SetColSize
	SetEventInfo
	SetFinishText
	SetFnInfo
	SetItemImage
	SetItemPosition
	SetItemState
	SetMethodInfo
	SetPropertyInfo
	SetRowSize
	SetSpinnerText
	Setup
	SetVarInfo
	SetWizard
	ShowBalloonTip
	ShowCaptions
	ShowComment
	ShowCueWhenFocused
	ShowDropDown
	ShowHelp
	ShowInput
	ShowItem
	ShowProperties
	ShowSession
	ShowSIP
	ShowThumb
	SingleClickExpand
	SIPMode
	SIPResize
	Size
	Sizeable
	SM
	SocketNumber
	SocketType
	SortItems
	Spin
	Spinner
	SplitObj1
	SplitObj2
	Splitter
	Splitting
	Start
	StartIn
	StartSplit
	State
	StateChange
	Static
	StatusBar
	StatusField
	Step
	Style
	SubForm
	SysColorChange
	SysMenu
	SysTrayItem
	TabBar
	TabBtn
	TabButton
	TabControl
	TabFocus
	TabIndex
	TabJustify
	TabObj
	TabSize
	Target
	TargetState
	TCPAccept
	TCPClose
	TCPConnect
	TCPError
	TCPGetHostID
	TCPGotAddr
	TCPGotPort
	TCPReady
	TCPRecv
	TCPSend
	TCPSendPicture
	TCPSocket
	Text
	Text
	TextSize
	Thumb
	ThumbDrag
	ThumbRect
	TickAlign
	TickSpacing
	Timer
	Timer
	Tip
	TipField
	TipObj
	TitleHeight
	TitleWidth
	Today
	ToolBar
	ToolboxBitmap
	ToolButton
	ToolControl
	TrackBar
	TrackRect
	Translate
	Transparent
	TreeView
	Type
	TypeLibFile
	TypeLibID
	TypeList
	Underline
	Undo
	UndocksToRoot
	UpDown
	UpperCase
	ValidIfEmpty
	VAlign
	Value
	Values
	VariableHeight
	View
	Visible
	VScroll
	VScroll
	VThumbDrag
	Wait
	WantsReturn
	WeekNumbers
	Weight
	WinIniChange
	WordFormat
	Wrap
	XRange
	Yield
	YRange

